Zhang Y, Wang P, Xue S, Woods T, Guo Y, Zampella G
Inorg Chem. 2023; 62(41):16842-16853.
PMID: 37788376
PMC: 10712436.
DOI: 10.1021/acs.inorgchem.3c02289.
Song L, Liu B, Liu W, Tan Z
RSC Adv. 2022; 10(53):32069-32077.
PMID: 35518169
PMC: 9056516.
DOI: 10.1039/d0ra04344c.
Barrozo A, Orio M
RSC Adv. 2022; 11(9):5232-5238.
PMID: 35424428
PMC: 8694661.
DOI: 10.1039/d0ra10212a.
Caserta G, Lorent C, Ciaccafava A, Keck M, Breglia R, Greco C
Chem Sci. 2021; 11(21):5453-5465.
PMID: 34094072
PMC: 8159394.
DOI: 10.1039/d0sc01369b.
Fehl C, Davis B
Proc Math Phys Eng Sci. 2016; 472(2189):20160078.
PMID: 27279776
PMC: 4893187.
DOI: 10.1098/rspa.2016.0078.
Models of the Ni-L and Ni-SIa States of the [NiFe]-Hydrogenase Active Site.
Chambers G, Huynh M, Li Y, Hammes-Schiffer S, Rauchfuss T, Reijerse E
Inorg Chem. 2015; 55(2):419-31.
PMID: 26421729
PMC: 4807737.
DOI: 10.1021/acs.inorgchem.5b01662.
Synthetic Active Site Model of the [NiFeSe] Hydrogenase.
Wombwell C, Reisner E
Chemistry. 2015; 21(22):8096-104.
PMID: 25847470
PMC: 4510704.
DOI: 10.1002/chem.201500311.
Access to Formally Ni(I) States in a Heterobimetallic NiZn System.
Uyeda C, Peters J
Chem Sci. 2015; 4(1):157-163.
PMID: 25614786
PMC: 4300139.
DOI: 10.1039/C2SC21231E.
Hydrogen activation by biomimetic [NiFe]-hydrogenase model containing protected cyanide cofactors.
Manor B, Rauchfuss T
J Am Chem Soc. 2013; 135(32):11895-900.
PMID: 23899049
PMC: 3843950.
DOI: 10.1021/ja404580r.
Catalytic hydrogen oxidation: dawn of a new iron age.
Simmons T, Artero V
Angew Chem Int Ed Engl. 2013; 52(24):6143-5.
PMID: 23696244
PMC: 4477033.
DOI: 10.1002/anie.201302908.
Active-site models for the nickel-iron hydrogenases: effects of ligands on reactivity and catalytic properties.
Carroll M, Barton B, Gray D, Mack A, Rauchfuss T
Inorg Chem. 2011; 50(19):9554-63.
PMID: 21866886
PMC: 3183104.
DOI: 10.1021/ic2012759.
Hydride-containing models for the active site of the nickel-iron hydrogenases.
Barton B, Rauchfuss T
J Am Chem Soc. 2010; 132(42):14877-85.
PMID: 20925337
PMC: 2980840.
DOI: 10.1021/ja105312p.
A model for the CO-inhibited form of [NiFe] hydrogenase: synthesis of CO3Fe(micro-StBu)3Ni{SC6H3-2,6-(mesityl)2} and reversible CO addition at the Ni site.
Ohki Y, Yasumura K, Ando M, Shimokata S, Tatsumi K
Proc Natl Acad Sci U S A. 2010; 107(9):3994-7.
PMID: 20147622
PMC: 2840173.
DOI: 10.1073/pnas.0913399107.
Nickel-iron dithiolato hydrides relevant to the [NiFe]-hydrogenase active site.
Barton B, Whaley C, Rauchfuss T, Gray D
J Am Chem Soc. 2009; 131(20):6942-3.
PMID: 19413314
PMC: 4364603.
DOI: 10.1021/ja902570u.
Coordination chemistry of [HFe(CN)(2)(CO)(3)](-) and its derivatives: toward a model for the iron subsite of the [NiFe]-hydrogenases.
Whaley C, Rauchfuss T, Wilson S
Inorg Chem. 2009; 48(10):4462-9.
PMID: 19374433
PMC: 2732431.
DOI: 10.1021/ic900200s.
Biomimetic chemistry of iron, nickel, molybdenum, and tungsten in sulfur-ligated protein sites.
Groysman S, Holm R
Biochemistry. 2009; 48(11):2310-20.
PMID: 19206188
PMC: 2765533.
DOI: 10.1021/bi900044e.
Thiolate-bridged dinuclear iron(tris-carbonyl)-nickel complexes relevant to the active site of [NiFe] hydrogenase.
Ohki Y, Yasumura K, Kuge K, Tanino S, Ando M, Li Z
Proc Natl Acad Sci U S A. 2008; 105(22):7652-7.
PMID: 18511566
PMC: 2409409.
DOI: 10.1073/pnas.0800538105.
Models for the hydrogenases put the focus where it should be--hydrogen.
Mealli C, Rauchfuss T
Angew Chem Int Ed Engl. 2007; 46(47):8942-4.
PMID: 17963205
PMC: 2424209.
DOI: 10.1002/anie.200703413.
Modulation of the electronic structure and the Ni-Fe distance in heterobimetallic models for the active site in [NiFe]hydrogenase.
Zhu W, Marr A, Wang Q, Neese F, Spencer D, Blake A
Proc Natl Acad Sci U S A. 2005; 102(51):18280-5.
PMID: 16352727
PMC: 1317917.
DOI: 10.1073/pnas.0505779102.