» Articles » PMID: 25832364

Demonstration of Entanglement-enhanced Phase Estimation in Solid

Overview
Journal Nat Commun
Specialty Biology
Date 2015 Apr 3
PMID 25832364
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

Precise parameter estimation plays a central role in science and technology. The statistical error in estimation can be decreased by repeating measurement, leading to that the resultant uncertainty of the estimated parameter is proportional to the square root of the number of repetitions in accordance with the central limit theorem. Quantum parameter estimation, an emerging field of quantum technology, aims to use quantum resources to yield higher statistical precision than classical approaches. Here we report the first room-temperature implementation of entanglement-enhanced phase estimation in a solid-state system: the nitrogen-vacancy centre in pure diamond. We demonstrate a super-resolving phase measurement with two entangled qubits of different physical realizations: an nitrogen-vacancy centre electron spin and a proximal (13)C nuclear spin. The experimental data shows clearly the uncertainty reduction when entanglement resource is used, confirming the theoretical expectation. Our results represent an elemental demonstration of enhancement of quantum metrology against classical procedure.

Citing Articles

Beating the standard quantum limit under ambient conditions with solid-state spins.

Xie T, Zhao Z, Kong X, Ma W, Wang M, Ye X Sci Adv. 2021; 7(32).

PMID: 34362736 PMC: 8346219. DOI: 10.1126/sciadv.abg9204.


Enhancing a phase measurement by sequentially probing a solid-state system.

Knott P, Munro W, Dunningham J Nat Commun. 2016; 7:11521.

PMID: 27158138 PMC: 4865805. DOI: 10.1038/ncomms11520.


Reply to 'Enhancing a phase measurement by sequentially probing a solid-state system'.

Liu G, Zhang Y, Chang Y, Yue J, Fan H, Pan X Nat Commun. 2016; 7:11521.

PMID: 27156454 PMC: 4865809. DOI: 10.1038/ncomms11521.


Quantum metrology with spin cat states under dissipation.

Huang J, Qin X, Zhong H, Ke Y, Lee C Sci Rep. 2015; 5:17894.

PMID: 26647821 PMC: 4673426. DOI: 10.1038/srep17894.

References
1.
Braunstein , Caves . Statistical distance and the geometry of quantum states. Phys Rev Lett. 1994; 72(22):3439-3443. DOI: 10.1103/PhysRevLett.72.3439. View

2.
Dutt M, Childress L, Jiang L, Togan E, Maze J, Jelezko F . Quantum register based on individual electronic and nuclear spin qubits in diamond. Science. 2007; 316(5829):1312-6. DOI: 10.1126/science.1139831. View

3.
Jo G, Shin Y, Will S, Pasquini T, Saba M, Ketterle W . Long phase coherence time and number squeezing of two Bose-Einstein condensates on an atom chip. Phys Rev Lett. 2007; 98(3):030407. DOI: 10.1103/PhysRevLett.98.030407. View

4.
Liu G, Jiang Q, Chang Y, Liu D, Li W, Gu C . Protection of centre spin coherence by dynamic nuclear spin polarization in diamond. Nanoscale. 2014; 6(17):10134-9. DOI: 10.1039/c4nr02007c. View

5.
Childress L, Dutt M, Taylor J, Zibrov A, Jelezko F, Wrachtrup J . Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science. 2006; 314(5797):281-5. DOI: 10.1126/science.1131871. View