Experimental Demonstration of Entanglement-enhanced Rotation Angle Estimation Using Trapped Ions
Overview
Affiliations
We experimentally investigate three methods, utilizing different atomic observables and entangled states, to increase the sensitivity of rotation angle measurements beyond the "standard quantum limit" for nonentangled states. All methods use a form of quantum mechanical "squeezing." In a system of two entangled trapped (9)Be(+) ions we observe a reduction in uncertainty of rotation angle below the standard quantum limit for all three methods including all sources of noise. As an application, we demonstrate an increase in precision of frequency measurement in a Ramsey spectroscopy experiment.
Rizvi S, Asif N, Ulum M, Duong T, Shin H Sensors (Basel). 2022; 22(18).
PMID: 36146114 PMC: 9500965. DOI: 10.3390/s22186767.
An elementary quantum network of entangled optical atomic clocks.
Nichol B, Srinivas R, Nadlinger D, Drmota P, Main D, Araneda G Nature. 2022; 609(7928):689-694.
PMID: 36071166 DOI: 10.1038/s41586-022-05088-z.
A Molecular Approach to Quantum Sensing.
Yu C, von Kugelgen S, Laorenza D, Freedman D ACS Cent Sci. 2021; 7(5):712-723.
PMID: 34079892 PMC: 8161477. DOI: 10.1021/acscentsci.0c00737.
Prospects and challenges for squeezing-enhanced optical atomic clocks.
Schulte M, Lisdat C, Schmidt P, Sterr U, Hammerer K Nat Commun. 2020; 11(1):5955.
PMID: 33235213 PMC: 7686368. DOI: 10.1038/s41467-020-19403-7.
Quantum metrology with quantum-chaotic sensors.
Fiderer L, Braun D Nat Commun. 2018; 9(1):1351.
PMID: 29636451 PMC: 5893654. DOI: 10.1038/s41467-018-03623-z.