» Articles » PMID: 25765641

Accurate Read-based Metagenome Characterization Using a Hierarchical Suite of Unique Signatures

Overview
Specialty Biochemistry
Date 2015 Mar 14
PMID 25765641
Citations 82
Authors
Affiliations
Soon will be listed here.
Abstract

A major challenge in the field of shotgun metagenomics is the accurate identification of organisms present within a microbial community, based on classification of short sequence reads. Though existing microbial community profiling methods have attempted to rapidly classify the millions of reads output from modern sequencers, the combination of incomplete databases, similarity among otherwise divergent genomes, errors and biases in sequencing technologies, and the large volumes of sequencing data required for metagenome sequencing has led to unacceptably high false discovery rates (FDR). Here, we present the application of a novel, gene-independent and signature-based metagenomic taxonomic profiling method with significantly and consistently smaller FDR than any other available method. Our algorithm circumvents false positives using a series of non-redundant signature databases and examines Genomic Origins Through Taxonomic CHAllenge (GOTTCHA). GOTTCHA was tested and validated on 20 synthetic and mock datasets ranging in community composition and complexity, was applied successfully to data generated from spiked environmental and clinical samples, and robustly demonstrates superior performance compared with other available tools.

Citing Articles

Standardized and accessible multi-omics bioinformatics workflows through the NMDC EDGE resource.

Kelliher J, Xu Y, Flynn M, Babinski M, Canon S, Cavanna E Comput Struct Biotechnol J. 2025; 23:3575-3583.

PMID: 39963423 PMC: 11832004. DOI: 10.1016/j.csbj.2024.09.018.


Metagenomic profiling of nasopharyngeal samples from adults with acute respiratory infection.

Sandybayev N, Beloussov V, Strochkov V, Solomadin M, Granica J, Yegorov S R Soc Open Sci. 2024; 11(7):240108.

PMID: 39076360 PMC: 11286146. DOI: 10.1098/rsos.240108.


Combining compositional data sets introduces error in covariance network reconstruction.

Brunner J, Robinson A, Chain P ISME Commun. 2024; 4(1):ycae057.

PMID: 38812718 PMC: 11135214. DOI: 10.1093/ismeco/ycae057.


Genomic fingerprints of the world's soil ecosystems.

Graham E, Garayburu-Caruso V, Wu R, Zheng J, McClure R, Jones G mSystems. 2024; 9(6):e0111223.

PMID: 38722174 PMC: 11237643. DOI: 10.1128/msystems.01112-23.


Sea cucumber () intestinal microbiome dataset from Puerto Rico, generated by shotgun sequencing.

Rivera-Lopez E, Nieves-Morales R, Melendez-Martinez G, Paez-Diaz J, Rodriguez-Carrio S, Rodriguez-Ramos J Data Brief. 2024; 54:110421.

PMID: 38690316 PMC: 11058721. DOI: 10.1016/j.dib.2024.110421.


References
1.
Breitbart M, Felts B, Kelley S, Mahaffy J, Nulton J, Salamon P . Diversity and population structure of a near-shore marine-sediment viral community. Proc Biol Sci. 2004; 271(1539):565-74. PMC: 1691639. DOI: 10.1098/rspb.2003.2628. View

2.
. Structure, function and diversity of the healthy human microbiome. Nature. 2012; 486(7402):207-14. PMC: 3564958. DOI: 10.1038/nature11234. View

3.
Pan Y, Bodrossy L, Frenzel P, Hestnes A, Krause S, Luke C . Impacts of inter- and intralaboratory variations on the reproducibility of microbial community analyses. Appl Environ Microbiol. 2010; 76(22):7451-8. PMC: 2976186. DOI: 10.1128/AEM.01595-10. View

4.
Langmead B, Trapnell C, Pop M, Salzberg S . Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10(3):R25. PMC: 2690996. DOI: 10.1186/gb-2009-10-3-r25. View

5.
Scholz M, Lo C, Chain P . Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr Opin Biotechnol. 2011; 23(1):9-15. DOI: 10.1016/j.copbio.2011.11.013. View