» Articles » PMID: 25761766

U6 SnRNA Pseudogenes: Markers of Retrotransposition Dynamics in Mammals

Overview
Journal Mol Biol Evol
Specialty Biology
Date 2015 Mar 13
PMID 25761766
Citations 24
Authors
Affiliations
Soon will be listed here.
Abstract

Transposable elements comprise more than 45% of the human genome and long interspersed nuclear element 1 (LINE-1 or L1) is the only autonomous mobile element remaining active. Since its identification, it has been proposed that L1 contributes to the mobilization and amplification of other cellular RNAs and more recently, experimental demonstrations of this function has been described for many transcripts such as Alu, a nonautonomous mobile element, cellular mRNAs, or small noncoding RNAs. Detailed examination of the mobilization of various cellular RNAs revealed distinct pathways by which they could be recruited during retrotransposition; template choice or template switching. Here, by analyzing genomic structures and retrotransposition signatures associated with small nuclear RNA (snRNA) sequences, we identified distinct recruiting steps during the L1 retrotransposition cycle for the formation of snRNA-processed pseudogenes. Interestingly, some of the identified recruiting steps take place in the nucleus. Moreover, after comparison to other vertebrate genomes, we established that snRNA amplification by template switching is common to many LINE families from several LINE clades. Finally, we suggest that U6 snRNA copies can serve as markers of L1 retrotransposition dynamics in mammalian genomes.

Citing Articles

Comparative Genomics Reveals LINE-1 Recombination with Diverse RNAs.

Law C, Burns K bioRxiv. 2025; .

PMID: 39975348 PMC: 11838501. DOI: 10.1101/2025.02.02.635956.


RetroSeeker reveals the characteristics, expression, and evolution of a large set of novel retrotransposons.

Huang J, Chen Z, Li B, Qu L, Yang J Adv Biotechnol (Singap). 2025; 1(4):5.

PMID: 39883328 PMC: 11727581. DOI: 10.1007/s44307-023-00005-5.


Deletions of singular U1 snRNA gene significantly interfere with transcription and 3'-end mRNA formation.

Wang M, Liang A, Zhou Z, Pang T, Fan Y, Xu Y PLoS Genet. 2023; 19(11):e1011021.

PMID: 37917726 PMC: 10645366. DOI: 10.1371/journal.pgen.1011021.


Introns: the "dark matter" of the eukaryotic genome.

Girardini K, Olthof A, Kanadia R Front Genet. 2023; 14:1150212.

PMID: 37260773 PMC: 10228655. DOI: 10.3389/fgene.2023.1150212.


LINE-1 retrotransposons facilitate horizontal gene transfer into poxviruses.

Rahman M, Haller S, Stoian A, Li J, Brennan G, Rothenburg S Elife. 2022; 11.

PMID: 36069678 PMC: 9578709. DOI: 10.7554/eLife.63327.


References
1.
Wei W, Gilbert N, Ooi S, Lawler J, Ostertag E, Kazazian H . Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol. 2001; 21(4):1429-39. PMC: 99594. DOI: 10.1128/MCB.21.4.1429-1439.2001. View

2.
Fudal I, Bohnert H, Tharreau D, Lebrun M . Transposition of MINE, a composite retrotransposon, in the avirulence gene ACE1 of the rice blast fungus Magnaporthe grisea. Fungal Genet Biol. 2005; 42(9):761-72. DOI: 10.1016/j.fgb.2005.05.001. View

3.
Wallace N, Wagstaff B, Deininger P, Roy-Engel A . LINE-1 ORF1 protein enhances Alu SINE retrotransposition. Gene. 2008; 419(1-2):1-6. PMC: 2491492. DOI: 10.1016/j.gene.2008.04.007. View

4.
Kulpa D, Moran J . Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat Struct Mol Biol. 2006; 13(7):655-60. DOI: 10.1038/nsmb1107. View

5.
Cost G, Feng Q, Jacquier A, Boeke J . Human L1 element target-primed reverse transcription in vitro. EMBO J. 2002; 21(21):5899-910. PMC: 131089. DOI: 10.1093/emboj/cdf592. View