» Articles » PMID: 25741452

Computational Methodology for ChIP-seq Analysis

Overview
Journal Quant Biol
Publisher Wiley
Date 2015 Mar 6
PMID 25741452
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Chromatin immunoprecipitation coupled with massive parallel sequencing (ChIP-seq) is a powerful technology to identify the genome-wide locations of DNA binding proteins such as transcription factors or modified histones. As more and more experimental laboratories are adopting ChIP-seq to unravel the transcriptional and epigenetic regulatory mechanisms, computational analyses of ChIP-seq also become increasingly comprehensive and sophisticated. In this article, we review current computational methodology for ChIP-seq analysis, recommend useful algorithms and workflows, and introduce quality control measures at different analytical steps. We also discuss how ChIP-seq could be integrated with other types of genomic assays, such as gene expression profiling and genome-wide association studies, to provide a more comprehensive view of gene regulatory mechanisms in important physiological and pathological processes.

Citing Articles

Statistical Analysis in ChIP-seq-Related Applications.

Teng M Methods Mol Biol. 2023; 2629:169-181.

PMID: 36929078 DOI: 10.1007/978-1-0716-2986-4_9.


2,3,7,8-Tetrachlorodibenzo-p-dioxin induces multigenerational alterations in the expression of microRNA in the thymus through epigenetic modifications.

Singh N, Yang X, Bam M, Nagarkatti M, Nagarkatti P PNAS Nexus. 2023; 2(1):pgac290.

PMID: 36712935 PMC: 9833045. DOI: 10.1093/pnasnexus/pgac290.


Meta-analysis and Consolidation of Farnesoid X Receptor Chromatin Immunoprecipitation Sequencing Data Across Different Species and Conditions.

Jungwirth E, Panzitt K, Marschall H, Thallinger G, Wagner M Hepatol Commun. 2021; 5(10):1721-1736.

PMID: 34558825 PMC: 8485886. DOI: 10.1002/hep4.1749.


RECOGNICER: A coarse-graining approach for identifying broad domains from ChIP-seq data.

Zang C, Wang Y, Peng W Quant Biol. 2021; 8(4):359-368.

PMID: 34327037 PMC: 8318318. DOI: 10.1007/s40484-020-0225-2.


CpG content-dependent associations between transcription factors and histone modifications.

Fischer J, Behjati Ardakani F, Kattler K, Walter J, Schulz M PLoS One. 2021; 16(4):e0249985.

PMID: 33857234 PMC: 8049299. DOI: 10.1371/journal.pone.0249985.


References
1.
Wang Q, Li W, Zhang Y, Yuan X, Xu K, Yu J . Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell. 2009; 138(2):245-56. PMC: 2726827. DOI: 10.1016/j.cell.2009.04.056. View

2.
Gerstein M, Lu Z, Van Nostrand E, Cheng C, Arshinoff B, Liu T . Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science. 2010; 330(6012):1775-87. PMC: 3142569. DOI: 10.1126/science.1196914. View

3.
Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F . Tablet--next generation sequence assembly visualization. Bioinformatics. 2009; 26(3):401-2. PMC: 2815658. DOI: 10.1093/bioinformatics/btp666. View

4.
Heintzman N, Stuart R, Hon G, Fu Y, Ching C, Hawkins R . Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet. 2007; 39(3):311-8. DOI: 10.1038/ng1966. View

5.
Fujita P, Rhead B, Zweig A, Hinrichs A, Karolchik D, Cline M . The UCSC Genome Browser database: update 2011. Nucleic Acids Res. 2010; 39(Database issue):D876-82. PMC: 3242726. DOI: 10.1093/nar/gkq963. View