Borhany H
JMIRx Med. 2025; 6:e50458.
PMID: 39903589
PMC: 11812619.
DOI: 10.2196/50458.
Sarkar O, Rova U, Christakopoulos P, Matsakas L
Sci Rep. 2024; 14(1):18442.
PMID: 39117660
PMC: 11310495.
DOI: 10.1038/s41598-024-68904-8.
Koubaa M
Molecules. 2024; 29(11).
PMID: 38893350
PMC: 11173433.
DOI: 10.3390/molecules29112477.
Logan M, Zhu F, Lens P, Cetecioglu Z
ACS Omega. 2023; 8(38):34397-34409.
PMID: 37779932
PMC: 10535259.
DOI: 10.1021/acsomega.2c06459.
Sarkar O, Matsakas L, Rova U, Christakopoulos P
iScience. 2023; 26(4):106519.
PMID: 37102152
PMC: 10123347.
DOI: 10.1016/j.isci.2023.106519.
Autofermentation of alkaline cyanobacterial biomass to enable biorefinery approach.
Demirkaya C, Vadlamani A, Tervahauta T, Strous M, De la Hoz Siegler H
Biotechnol Biofuels Bioprod. 2023; 16(1):62.
PMID: 37029442
PMC: 10082510.
DOI: 10.1186/s13068-023-02311-5.
The Performance of Ultrafiltration Process to Further Refine Lactic Acid from the Pre-Microfiltered Broth of Kitchen Waste Fermentation.
Guo Y, Li C, Zhao H, Wang X, Gao M, Sun X
Membranes (Basel). 2023; 13(3).
PMID: 36984717
PMC: 10051411.
DOI: 10.3390/membranes13030330.
Mixotrophic Cultivation of a Native Cyanobacterium, GO0704, to Produce Phycobiliprotein and Biodiesel.
Kim S, Bae E, Kim J, Kang J, Choi Y
J Microbiol Biotechnol. 2022; 32(10):1325-1334.
PMID: 36224760
PMC: 9668097.
DOI: 10.4014/jmb.2207.07008.
Biological acidification of pig manure using banana peel waste to improve the dissolution of particulate phosphorus: A critical step for maximum phosphorus recovery as struvite.
Moyo L, Simate G, Mutsatsa T
Heliyon. 2022; 8(8):e10091.
PMID: 36061013
PMC: 9433603.
DOI: 10.1016/j.heliyon.2022.e10091.
Optimization of simultaneous production of volatile fatty acids and bio-hydrogen from food waste using response surface methodology.
Liu N, Jiang J, Yan F, Xu Y, Yang M, Gao Y
RSC Adv. 2022; 8(19):10457-10464.
PMID: 35540465
PMC: 9078927.
DOI: 10.1039/c7ra13268a.
Anaerobic fermentation of hybrid mixed with fruit and vegetable wastes to produce volatile fatty acids.
Xing T, Yu S, Zhen F, Kong X, Sun Y
RSC Adv. 2022; 10(55):33261-33267.
PMID: 35515045
PMC: 9056692.
DOI: 10.1039/d0ra04400h.
Effects of Mixing Volatile Fatty Acids as Carbon Sources on Carbon Metabolism and Redox Balance Mechanisms.
Segura P, De Meur Q, Tanghe A, Onderwater R, Dewasme L, Wattiez R
Microorganisms. 2021; 9(9).
PMID: 34576891
PMC: 8471276.
DOI: 10.3390/microorganisms9091996.
A Brief Journey into the History of and Future Sources and Uses of Fatty Acids.
Cerone M, Smith T
Front Nutr. 2021; 8:570401.
PMID: 34355007
PMC: 8329090.
DOI: 10.3389/fnut.2021.570401.
Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates Production.
Szacherska K, Oleskowicz-Popiel P, Ciesielski S, Mozejko-Ciesielska J
Polymers (Basel). 2021; 13(3).
PMID: 33498279
PMC: 7863920.
DOI: 10.3390/polym13030321.
Factors influencing volatile fatty acids production from food wastes via anaerobic digestion.
Lukitawesa , Patinvoh R, Millati R, Sarvari-Horvath I, Taherzadeh M
Bioengineered. 2019; 11(1):39-52.
PMID: 31880192
PMC: 7571609.
DOI: 10.1080/21655979.2019.1703544.
Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review.
Wainaina S, Lukitawesa , Awasthi M, Taherzadeh M
Bioengineered. 2019; 10(1):437-458.
PMID: 31570035
PMC: 6802927.
DOI: 10.1080/21655979.2019.1673937.
Enhancement of Volatile Fatty Acids Production from Food Waste by Mature Compost Addition.
Cheah Y, Dosta J, Mata-Alvarez J
Molecules. 2019; 24(16).
PMID: 31426488
PMC: 6721731.
DOI: 10.3390/molecules24162986.
Startup performance of microbial electrolysis cell assisted anaerobic digester (MEC-AD) with pre-acclimated activated carbon.
Xu S, Zhang Y, Luo L, Liu H
Bioresour Technol Rep. 2019; 5:91-98.
PMID: 31193294
PMC: 6524652.
DOI: 10.1016/j.biteb.2018.12.007.
Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH.
Cheah Y, Vidal-Antich C, Dosta J, Mata-Alvarez J
Environ Sci Pollut Res Int. 2019; 26(35):35509-35522.
PMID: 31111388
PMC: 6923264.
DOI: 10.1007/s11356-019-05394-6.
A cellulolytic fungal biofilm enhances the consolidated bioconversion of cellulose to short chain fatty acids by the rumen microbiome.
Xiros C, Shahab R, Hans-Peter Studer M
Appl Microbiol Biotechnol. 2019; 103(8):3355-3365.
PMID: 30847541
PMC: 6449290.
DOI: 10.1007/s00253-019-09706-1.