» Articles » PMID: 25659350

Mitochondrial Regulation of β-cell Function: Maintaining the Momentum for Insulin Release

Overview
Journal Mol Aspects Med
Date 2015 Feb 10
PMID 25659350
Citations 49
Authors
Affiliations
Soon will be listed here.
Abstract

All forms of diabetes share the common etiology of insufficient pancreatic β-cell function to meet peripheral insulin demand. In pancreatic β-cells, mitochondria serve to integrate the metabolism of exogenous nutrients into energy output, which ultimately leads to insulin release. As such, mitochondrial dysfunction underlies β-cell failure and the development of diabetes. Mitochondrial regulation of β-cell function occurs through many diverse pathways, including metabolic coupling, generation of reactive oxygen species, maintenance of mitochondrial mass, and through interaction with other cellular organelles. In this chapter, we will focus on the importance of enzymatic regulators of mitochondrial fuel metabolism and control of mitochondrial mass to pancreatic β-cell function, describing how defects in these pathways ultimately lead to diabetes. Furthermore, we will examine the factors responsible for mitochondrial biogenesis and degradation and their roles in the balance of mitochondrial mass in β-cells. Clarifying the causes of β-cell mitochondrial dysfunction may inform new approaches to treat the underlying etiologies of diabetes.

Citing Articles

Ca signaling and metabolic stress-induced pancreatic β-cell failure.

Magnuson M, Osipovich A Front Endocrinol (Lausanne). 2024; 15:1412411.

PMID: 39015185 PMC: 11250477. DOI: 10.3389/fendo.2024.1412411.


Mitochondrial bioenergetics, metabolism, and beyond in pancreatic β-cells and diabetes.

Rivera Nieves A, Wauford B, Fu A Front Mol Biosci. 2024; 11:1354199.

PMID: 38404962 PMC: 10884328. DOI: 10.3389/fmolb.2024.1354199.


Changes in Cells Associated with Insulin Resistance.

Szablewski L Int J Mol Sci. 2024; 25(4).

PMID: 38397072 PMC: 10889819. DOI: 10.3390/ijms25042397.


Advanced Imaging Techniques for the Characterization of Subcellular Organelle Structure in Pancreatic Islet β Cells.

McLaughlin M, Weaver S, Syed F, Evans-Molina C Compr Physiol. 2023; 14(1):5243-5267.

PMID: 38158370 PMC: 11490899. DOI: 10.1002/cphy.c230002.


The NERP-4-SNAT2 axis regulates pancreatic β-cell maintenance and function.

Zhang W, Miura A, Abu Saleh M, Shimizu K, Mita Y, Tanida R Nat Commun. 2023; 14(1):8158.

PMID: 38071217 PMC: 10710447. DOI: 10.1038/s41467-023-43976-8.


References
1.
Sandyk R . The relationship between diabetes mellitus and Parkinson's disease. Int J Neurosci. 1993; 69(1-4):125-30. DOI: 10.3109/00207459309003322. View

2.
Zhang C, Baffy G, Perret P, Krauss S, Peroni O, Grujic D . Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell. 2001; 105(6):745-55. DOI: 10.1016/s0092-8674(01)00378-6. View

3.
Sener A, Malaisse W . L-leucine and a nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature. 1980; 288(5787):187-9. DOI: 10.1038/288187a0. View

4.
Gugneja S, Virbasius J, Scarpulla R . Four structurally distinct, non-DNA-binding subunits of human nuclear respiratory factor 2 share a conserved transcriptional activation domain. Mol Cell Biol. 1995; 15(1):102-11. PMC: 231915. DOI: 10.1128/MCB.15.1.102. View

5.
Wallace D, Zheng X, Lott M, Shoffner J, Hodge J, Kelley R . Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease. Cell. 1988; 55(4):601-10. DOI: 10.1016/0092-8674(88)90218-8. View