» Articles » PMID: 25643398

Kin Cell Lysis is a Danger Signal That Activates Antibacterial Pathways of Pseudomonas Aeruginosa

Overview
Journal Elife
Specialty Biology
Date 2015 Feb 3
PMID 25643398
Citations 75
Authors
Affiliations
Soon will be listed here.
Abstract

The perception and response to cellular death is an important aspect of multicellular eukaryotic life. For example, damage-associated molecular patterns activate an inflammatory cascade that leads to removal of cellular debris and promotion of healing. We demonstrate that lysis of Pseudomonas aeruginosa cells triggers a program in the remaining population that confers fitness in interspecies co-culture. We find that this program, termed P. aeruginosa response to antagonism (PARA), involves rapid deployment of antibacterial factors and is mediated by the Gac/Rsm global regulatory pathway. Type VI secretion, and, unexpectedly, conjugative type IV secretion within competing bacteria, induce P. aeruginosa lysis and activate PARA, thus providing a mechanism for the enhanced capacity of P. aeruginosa to target bacteria that elaborate these factors. Our finding that bacteria sense damaged kin and respond via a widely distributed pathway to mount a complex response raises the possibility that danger sensing is an evolutionarily conserved process.

Citing Articles

Self-growth suppression in is caused by a diffusible antagonist.

Sandhu A, Fischer B, Subramanian S, Hoppe A, Brozel V ISME Commun. 2025; 5(1):ycaf032.

PMID: 40071143 PMC: 11896636. DOI: 10.1093/ismeco/ycaf032.


Pseudomonads coordinate innate defense against viruses and bacteria with a single regulatory system.

Brinkley D, Bertolli S, Gallagher L, Tan Y, de Silva M, Brockman A bioRxiv. 2025; .

PMID: 40060533 PMC: 11888443. DOI: 10.1101/2025.02.26.640152.


Distribution of the four type VI secretion systems in Pseudomonas aeruginosa and classification of their core and accessory effectors.

Habich A, Chaves Vargas V, Robinson L, Allsopp L, Unterweger D Nat Commun. 2025; 16(1):888.

PMID: 39837841 PMC: 11751169. DOI: 10.1038/s41467-024-54649-5.


Bacteria use exogenous peptidoglycan as a danger signal to trigger biofilm formation.

Vaidya S, Saha D, Rode D, Torrens G, Hansen M, Singh P Nat Microbiol. 2025; 10(1):144-157.

PMID: 39753671 PMC: 11726461. DOI: 10.1038/s41564-024-01886-5.


RNA-Seq reveals that Pseudomonas aeruginosa mounts growth medium-dependent competitive responses when sensing diffusible cues from Burkholderia cenocepacia.

Leinweber A, Laffont C, Lardi M, Eberl L, Pessi G, Kummerli R Commun Biol. 2024; 7(1):995.

PMID: 39143311 PMC: 11324955. DOI: 10.1038/s42003-024-06618-3.


References
1.
Vincent F, Round A, Reynaud A, Bordi C, Filloux A, Bourne Y . Distinct oligomeric forms of the Pseudomonas aeruginosa RetS sensor domain modulate accessibility to the ligand binding site. Environ Microbiol. 2010; 12(6):1775-86. DOI: 10.1111/j.1462-2920.2010.02264.x. View

2.
Schwarz S, West T, Boyer F, Chiang W, Carl M, Hood R . Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog. 2010; 6(8):e1001068. PMC: 2928800. DOI: 10.1371/journal.ppat.1001068. View

3.
Hayes C, Aoki S, Low D . Bacterial contact-dependent delivery systems. Annu Rev Genet. 2010; 44:71-90. DOI: 10.1146/annurev.genet.42.110807.091449. View

4.
Colvin K, Gordon V, Murakami K, Borlee B, Wozniak D, Wong G . The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog. 2011; 7(1):e1001264. PMC: 3029257. DOI: 10.1371/journal.ppat.1001264. View

5.
Konovalova A, Sogaard-Andersen L . Close encounters: contact-dependent interactions in bacteria. Mol Microbiol. 2011; 81(2):297-301. DOI: 10.1111/j.1365-2958.2011.07711.x. View