» Articles » PMID: 25641359

Genome Scans Reveal Candidate Domestication and Improvement Genes in Cultivated Sunflower, As Well As Post-domestication Introgression with Wild Relatives

Overview
Journal New Phytol
Specialty Biology
Date 2015 Feb 3
PMID 25641359
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

The development of modern crops typically involves both selection and hybridization, but to date most studies have focused on the former. In the present study, we explore how both processes, and their interactions, have molded the genome of the cultivated sunflower (Helianthus annuus), a globally important oilseed. To identify genes targeted by selection during the domestication and improvement of sunflower, and to detect post-domestication hybridization with wild species, we analyzed transcriptome sequences of 80 genotypes, including wild, landrace, and modern lines of H. annuus, as well as two cross-compatible wild relatives, Helianthus argophyllus and Helianthus petiolaris. Outlier analyses identified 122 and 15 candidate genes associated with domestication and improvement, respectively. As in several previous studies, genes putatively involved in oil biosynthesis were the most extreme outliers. Additionally, several promising associations were observed with previously mapped quantitative trait loci (QTLs), such as branching. Admixture analyses revealed that all the modern cultivar genomes we examined contained one or more introgressions from wild populations, with every chromosome having evidence of introgression in at least one modern line. Cumulatively, introgressions cover c. 10% of the cultivated sunflower genome. Surprisingly, introgressions do not avoid candidate domestication genes, probably because of the reintroduction of branching.

Citing Articles

Comparative Transcriptomic Analysis Reveals Domestication and Improvement Patterns of Broomcorn Millet ( L.).

Zhao X, Liu M, Li C, Zhang J, Li T, Sun F Int J Mol Sci. 2024; 25(20).

PMID: 39456795 PMC: 11507134. DOI: 10.3390/ijms252011012.


Dissecting the Genetic Architecture of Morphological Traits in Sunflower ( L.).

Delen Y, Palali-Delen S, Xu G, Neji M, Yang J, Dweikat I Genes (Basel). 2024; 15(7).

PMID: 39062729 PMC: 11275413. DOI: 10.3390/genes15070950.


Subfunctionalisation and self-repression of duplicated E1 homologues finetunes soybean flowering and adaptation.

Fang C, Sun Z, Li S, Su T, Wang L, Dong L Nat Commun. 2024; 15(1):6184.

PMID: 39039090 PMC: 11263555. DOI: 10.1038/s41467-024-50623-3.


Genetic diversities in wild and cultivated populations of the two closely-related medical plants species, Tripterygium Wilfordii and T. Hypoglaucum (Celastraceae).

Liu C, Wang J, Ko Y, Shiao M, Wang Y, Sun J BMC Plant Biol. 2024; 24(1):195.

PMID: 38493110 PMC: 10944624. DOI: 10.1186/s12870-024-04826-x.


Diamonds in the not-so-rough: Wild relative diversity hidden in crop genomes.

Flint-Garcia S, Feldmann M, Dempewolf H, Morrell P, Ross-Ibarra J PLoS Biol. 2023; 21(7):e3002235.

PMID: 37440605 PMC: 10368281. DOI: 10.1371/journal.pbio.3002235.