» Articles » PMID: 25631353

13C NMR Detects Conformational Change in the 100-kD Membrane Transporter ClC-ec1

Overview
Journal J Biomol NMR
Publisher Springer
Date 2015 Jan 30
PMID 25631353
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

CLC transporters catalyze the exchange of Cl(-) for H(+) across cellular membranes. To do so, they must couple Cl(-) and H(+) binding and unbinding to protein conformational change. However, the sole conformational changes distinguished crystallographically are small movements of a glutamate side chain that locally gates the ion-transport pathways. Therefore, our understanding of whether and how global protein dynamics contribute to the exchange mechanism has been severely limited. To overcome the limitations of crystallography, we used solution-state (13)C-methyl NMR with labels on methionine, lysine, and engineered cysteine residues to investigate substrate (H(+)) dependent conformational change outside the restraints of crystallization. We show that methyl labels in several regions report H(+)-dependent spectral changes. We identify one of these regions as Helix R, a helix that extends from the center of the protein, where it forms the part of the inner gate to the Cl(-)-permeation pathway, to the extracellular solution. The H(+)-dependent spectral change does not occur when a label is positioned just beyond Helix R, on the unstructured C-terminus of the protein. Together, the results suggest that H(+) binding is mechanistically coupled to closing of the intracellular access-pathway for Cl(-).

Citing Articles

Structural basis of pH-dependent activation in a CLC transporter.

Fortea E, Lee S, Chadda R, Argyros Y, Sandal P, Mahoney-Kruszka R Nat Struct Mol Biol. 2024; 31(4):644-656.

PMID: 38279055 PMC: 11262703. DOI: 10.1038/s41594-023-01210-5.


Vesicular CLC chloride/proton exchangers in health and diseases.

Picollo A Front Pharmacol. 2023; 14:1295068.

PMID: 38027030 PMC: 10662042. DOI: 10.3389/fphar.2023.1295068.


Exploring the World of Membrane Proteins: Techniques and Methods for Understanding Structure, Function, and Dynamics.

Boulos I, Jabbour J, Khoury S, Mikhael N, Tishkova V, Candoni N Molecules. 2023; 28(20).

PMID: 37894653 PMC: 10608922. DOI: 10.3390/molecules28207176.


The role of conformational change and key glutamic acid residues in the ClC-ec1 antiporter.

Yue Z, Li C, Voth G Biophys J. 2023; 122(6):1068-1085.

PMID: 36698313 PMC: 10111279. DOI: 10.1016/j.bpj.2023.01.025.


Simulation of pH-Dependent Conformational Transitions in Membrane Proteins: The CLC-ec1 Cl/H Antiporter.

Kots E, Shore D, Weinstein H Molecules. 2021; 26(22).

PMID: 34834047 PMC: 8625536. DOI: 10.3390/molecules26226956.


References
1.
Stauber T, Weinert S, Jentsch T . Cell biology and physiology of CLC chloride channels and transporters. Compr Physiol. 2013; 2(3):1701-44. DOI: 10.1002/cphy.c110038. View

2.
Lisal J, Maduke M . The ClC-0 chloride channel is a 'broken' Cl-/H+ antiporter. Nat Struct Mol Biol. 2008; 15(8):805-10. PMC: 2559860. DOI: 10.1038/nsmb.1466. View

3.
Danielson M, Falke J . Use of 19F NMR to probe protein structure and conformational changes. Annu Rev Biophys Biomol Struct. 1996; 25:163-95. PMC: 2899692. DOI: 10.1146/annurev.bb.25.060196.001115. View

4.
Khare D, Oldham M, Orelle C, Davidson A, Chen J . Alternating access in maltose transporter mediated by rigid-body rotations. Mol Cell. 2009; 33(4):528-36. PMC: 2714826. DOI: 10.1016/j.molcel.2009.01.035. View

5.
Jardetzky O . Simple allosteric model for membrane pumps. Nature. 1966; 211(5052):969-70. DOI: 10.1038/211969a0. View