Xu M, Neelands T, Powers A, Liu Y, Miller S, Pintilie G
Elife. 2024; 12.
PMID: 38345841
PMC: 10942593.
DOI: 10.7554/eLife.90648.
Xu M, Neelands T, Powers A, Liu Y, Miller S, Pintilie G
bioRxiv. 2023; .
PMID: 37645939
PMC: 10462068.
DOI: 10.1101/2023.08.13.553136.
Ma T, Wang L, Chai A, Liu C, Cui W, Yuan S
Nat Commun. 2023; 14(1):3424.
PMID: 37296152
PMC: 10256776.
DOI: 10.1038/s41467-023-39218-6.
Kwon H, Fairclough R, Chen T
Handb Exp Pharmacol. 2022; 283:1-34.
PMID: 35768555
DOI: 10.1007/164_2022_594.
McIlwain B, Ruprecht M, Stockbridge R
Annu Rev Biochem. 2021; 90:559-579.
PMID: 33492991
PMC: 8217344.
DOI: 10.1146/annurev-biochem-071520-112507.
Proton-dependent inhibition, inverted voltage activation, and slow gating of CLC-0 Chloride Channel.
Kwon H, Yu Y, Fairclough R, Chen T
PLoS One. 2020; 15(12):e0240704.
PMID: 33362212
PMC: 7757909.
DOI: 10.1371/journal.pone.0240704.
Metabolic energy sensing by mammalian CLC anion/proton exchangers.
Grieschat M, Guzman R, Langschwager K, Fahlke C, Alekov A
EMBO Rep. 2020; 21(6):e47872.
PMID: 32390228
PMC: 7271328.
DOI: 10.15252/embr.201947872.
Divergent Cl and H pathways underlie transport coupling and gating in CLC exchangers and channels.
Leisle L, Xu Y, Fortea E, Lee S, Galpin J, Vien M
Elife. 2020; 9.
PMID: 32343228
PMC: 7274781.
DOI: 10.7554/eLife.51224.
A CLC-ec1 mutant reveals global conformational change and suggests a unifying mechanism for the CLC Cl/H transport cycle.
Chavan T, Cheng R, Jiang T, Mathews I, Stein R, Koehl A
Elife. 2020; 9.
PMID: 32310757
PMC: 7253180.
DOI: 10.7554/eLife.53479.
Dynamical model of the CLC-2 ion channel reveals conformational changes associated with selectivity-filter gating.
McKiernan K, Koster A, Maduke M, Pande V
PLoS Comput Biol. 2020; 16(3):e1007530.
PMID: 32226009
PMC: 7145265.
DOI: 10.1371/journal.pcbi.1007530.
Structure of the CLC-1 chloride channel from .
Park E, MacKinnon R
Elife. 2018; 7.
PMID: 29809153
PMC: 6019066.
DOI: 10.7554/eLife.36629.
Gating Charge Calculations by Computational Electrophysiology Simulations.
Machtens J, Briones R, Alleva C, de Groot B, Fahlke C
Biophys J. 2017; 112(7):1396-1405.
PMID: 28402882
PMC: 5389965.
DOI: 10.1016/j.bpj.2017.02.016.
ClC Channels and Transporters: Structure, Physiological Functions, and Implications in Human Chloride Channelopathies.
Poroca D, Pelis R, Chappe V
Front Pharmacol. 2017; 8:151.
PMID: 28386229
PMC: 5362633.
DOI: 10.3389/fphar.2017.00151.
Helix O modulates voltage dependency of CLC-1.
Seong J, Ha K, Hong C, Myeong J, Lim H, Yang D
Pflugers Arch. 2016; 469(2):183-193.
PMID: 27921211
DOI: 10.1007/s00424-016-1907-5.
The Origin of Coupled Chloride and Proton Transport in a Cl/H Antiporter.
Lee S, Mayes H, Swanson J, Voth G
J Am Chem Soc. 2016; 138(45):14923-14930.
PMID: 27783900
PMC: 5114699.
DOI: 10.1021/jacs.6b06683.
Role of physiological ClC-1 Cl- ion channel regulation for the excitability and function of working skeletal muscle.
Pedersen T, Riisager A, de Paoli F, Chen T, Nielsen O
J Gen Physiol. 2016; 147(4):291-308.
PMID: 27022190
PMC: 4810071.
DOI: 10.1085/jgp.201611582.
A Pore Idea: the ion conduction pathway of TMEM16/ANO proteins is composed partly of lipid.
Whitlock J, Hartzell H
Pflugers Arch. 2016; 468(3):455-73.
PMID: 26739711
PMC: 4751199.
DOI: 10.1007/s00424-015-1777-2.
Gating the glutamate gate of CLC-2 chloride channel by pore occupancy.
De Jesus-Perez J, Castro-Chong A, Shieh R, Hernandez-Carballo C, De Santiago-Castillo J, Arreola J
J Gen Physiol. 2015; 147(1):25-37.
PMID: 26666914
PMC: 4692487.
DOI: 10.1085/jgp.201511424.
Identification of a lipid scrambling domain in ANO6/TMEM16F.
Yu K, Whitlock J, Lee K, Ortlund E, Cui Y, Hartzell H
Elife. 2015; 4:e06901.
PMID: 26057829
PMC: 4477620.
DOI: 10.7554/eLife.06901.
A tale of two CLCs: biophysical insights toward understanding ClC-5 and ClC-7 function in endosomes and lysosomes.
Zifarelli G
J Physiol. 2015; 593(18):4139-50.
PMID: 26036722
PMC: 4594289.
DOI: 10.1113/JP270604.