» Articles » PMID: 25619504

A Study of Room-temperature LixMn1.5Ni0.5O4 Solid Solutions

Overview
Journal Sci Rep
Specialty Science
Date 2015 Jan 27
PMID 25619504
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Understanding the kinetic implication of solid-solution vs. biphasic reaction pathways is critical for the development of advanced intercalation electrode materials. Yet this has been a long-standing challenge in materials science due to the elusive metastable nature of solid solution phases. The present study reports the synthesis, isolation, and characterization of room-temperature LixMn1.5Ni0.5O4 solid solutions. In situ XRD studies performed on pristine and chemically-delithiated, micron-sized single crystals reveal the thermal behavior of LixMn1.5Ni0.5O4 (0 ≤ x ≤ 1) cathode material consisting of three cubic phases: LiMn1.5Ni0.5O4 (Phase I), Li0.5Mn1.5Ni0.5O4 (Phase II) and Mn1.5Ni0.5O4 (Phase III). A phase diagram capturing the structural changes as functions of both temperature and Li content was established. The work not only demonstrates the possibility of synthesizing alternative electrode materials that are metastable in nature, but also enables in-depth evaluation on the physical, electrochemical and kinetic properties of transient intermediate phases and their role in battery electrode performance.

Citing Articles

Synthesis, Thermal Analysis, Spectroscopic Properties, and Degradation Process of Tutton Salts Doped with AgNO or HBO.

Pacheco T, Ludwig Z, Oliveira V, Barcelos I, de Souza R, Paiva E ACS Omega. 2023; 8(20):17800-17808.

PMID: 37251174 PMC: 10210023. DOI: 10.1021/acsomega.3c00622.


Phase Transitions in the "Spinel-Layered" LiNiMnO (x = 0, 0.5, 1) Cathodes upon (De)lithiation Studied with Operando Synchrotron X-ray Powder Diffraction.

Drozhzhin O, Alekseeva A, Shevchenko V, Chernyshov D, Abakumov A, Antipov E Nanomaterials (Basel). 2021; 11(6).

PMID: 34064226 PMC: 8224351. DOI: 10.3390/nano11061368.


Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials.

Mu L, Yuan Q, Tian C, Wei C, Zhang K, Liu J Nat Commun. 2018; 9(1):2810.

PMID: 30022082 PMC: 6052144. DOI: 10.1038/s41467-018-05172-x.


A three body problem: a genuine heterometallic molecule a mixture of two parent heterometallic molecules.

Han H, Wei Z, Barry M, Carozza J, Alkan M, Rogachev A Chem Sci. 2018; 9(21):4736-4745.

PMID: 29910924 PMC: 5982224. DOI: 10.1039/c8sc00917a.


Phase transformation mechanism in lithium manganese nickel oxide revealed by single-crystal hard X-ray microscopy.

Kuppan S, Xu Y, Liu Y, Chen G Nat Commun. 2017; 8:14309.

PMID: 28145406 PMC: 5296648. DOI: 10.1038/ncomms14309.

References
1.
Shaju K, Bruce P . Nano-LiNi(0.5)Mn(1.5)O(4) spinel: a high power electrode for Li-ion batteries. Dalton Trans. 2008; (40):5471-5. DOI: 10.1039/b806662k. View

2.
Gibot P, Casas-Cabanas M, Laffont L, Levasseur S, Carlach P, Hamelet S . Room-temperature single-phase Li insertion/extraction in nanoscale Li(x)FePO4. Nat Mater. 2008; 7(9):741-7. DOI: 10.1038/nmat2245. View

3.
Cabana J, Casas-Cabanas M, Omenya F, Chernova N, Zeng D, Whittingham M . Composition-structure relationships in the Li-ion battery electrode material LiNi(0.5)Mn(1.5)O(4). Chem Mater. 2012; 24(15):2952-2964. PMC: 3446784. DOI: 10.1021/cm301148d. View

4.
Zheng J, Xiao J, Yu X, Kovarik L, Gu M, Omenya F . Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder. Phys Chem Chem Phys. 2012; 14(39):13515-21. DOI: 10.1039/c2cp43007j. View

5.
Baddour-Hadjean R, Pereira-Ramos J . Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem Rev. 2009; 110(3):1278-319. DOI: 10.1021/cr800344k. View