Paschapur A, Manoj M, Pavan J, Subramanian S
Arch Toxicol. 2025; .
PMID: 40056168
DOI: 10.1007/s00204-025-04012-4.
Yuan X, Li H, Guo F
PLoS Biol. 2024; 22(12):e3002918.
PMID: 39621615
PMC: 11611155.
DOI: 10.1371/journal.pbio.3002918.
Bai H, Naidu T, Anderson J, Montemayor H, Do C, Ni L
Front Cell Neurosci. 2024; 18:1347460.
PMID: 39381503
PMC: 11459462.
DOI: 10.3389/fncel.2024.1347460.
Dweck H, Rutledge C
Open Biol. 2024; 14(3):230438.
PMID: 38531420
PMC: 10965328.
DOI: 10.1098/rsob.230438.
Chiang M, Lin Y, Wu T, Wu C
Cells. 2023; 12(24).
PMID: 38132112
PMC: 10741703.
DOI: 10.3390/cells12242792.
Neuronal calcium spikes enable vector inversion in the brain.
Ishida I, Sethi S, Mohren T, Abbott L, Maimon G
bioRxiv. 2023; .
PMID: 38077032
PMC: 10705278.
DOI: 10.1101/2023.11.24.568537.
Molecular and Neural Mechanisms of Temperature Preference Rhythm in .
Goda T, Umezaki Y, Hamada F
J Biol Rhythms. 2023; 38(4):326-340.
PMID: 37222551
PMC: 10330063.
DOI: 10.1177/07487304231171624.
Alleviation of thermal nociception depends on heat-sensitive neurons and a TRP channel in the brain.
Liu J, Liu W, Thakur D, Mack J, Spina A, Montell C
Curr Biol. 2023; 33(12):2397-2406.e6.
PMID: 37201520
PMC: 10330845.
DOI: 10.1016/j.cub.2023.04.055.
Sphingolipids in neurodegenerative diseases.
Pan X, Dutta D, Lu S, Bellen H
Front Neurosci. 2023; 17:1137893.
PMID: 36875645
PMC: 9978793.
DOI: 10.3389/fnins.2023.1137893.
Cool and warm ionotropic receptors control multiple thermotaxes in larvae.
Omelchenko A, Bai H, Spina E, Tyrrell J, Wilbourne J, Ni L
Front Mol Neurosci. 2022; 15:1023492.
PMID: 36452407
PMC: 9701816.
DOI: 10.3389/fnmol.2022.1023492.
How Temperature Influences Sleep.
Fan Y, Wang Y, Gu P, Han J, Tian Y
Int J Mol Sci. 2022; 23(20).
PMID: 36293048
PMC: 9603733.
DOI: 10.3390/ijms232012191.
A heat shock 70kDa protein MaltHSP70-2 contributes to thermal resistance in Monochamus alternatus (Coleoptera: Cerambycidae): quantification, localization, and functional analysis.
Li H, Li S, Chen J, Dai L, Chen R, Ye J
BMC Genomics. 2022; 23(1):646.
PMID: 36088287
PMC: 9464376.
DOI: 10.1186/s12864-022-08858-1.
Resistance and survival to extreme heat shows circadian and sex-specific patterns in A cavity nesting bee.
Hayes T, Lopez-Martinez G
Curr Res Insect Sci. 2022; 1:100020.
PMID: 36003599
PMC: 9387514.
DOI: 10.1016/j.cris.2021.100020.
Comparative analysis of temperature preference behavior and effects of temperature on daily behavior in 11 Drosophila species.
Ito F, Awasaki T
Sci Rep. 2022; 12(1):12692.
PMID: 35879333
PMC: 9314439.
DOI: 10.1038/s41598-022-16897-7.
Responses of different Drosophila species to temperature changes.
Huda A, Omelchenko A, Vaden T, Castaneda A, Ni L
J Exp Biol. 2022; 225(11).
PMID: 35481475
PMC: 9234498.
DOI: 10.1242/jeb.243708.
Molecular mechanisms underlying plasticity in a thermally varying environment.
Salachan P, Sorensen J
Mol Ecol. 2022; 31(11):3174-3191.
PMID: 35397190
PMC: 9325408.
DOI: 10.1111/mec.16463.
Interactions Between Temperature Variability and Reproductive Physiology Across Traits in an Intertidal Crab.
Lam E, Abegaz M, Gunderson A, Tsukimura B, Stillman J
Front Physiol. 2022; 13:796125.
PMID: 35350692
PMC: 8957995.
DOI: 10.3389/fphys.2022.796125.
Genes associated with hot defensive bee ball in the Japanese honeybee, Apis cerana japonica.
Kamioka T, Suzuki H, Ugajin A, Yamaguchi Y, Nishimura M, Sasaki T
BMC Ecol Evol. 2022; 22(1):31.
PMID: 35296235
PMC: 8925055.
DOI: 10.1186/s12862-022-01989-9.
Warm and cold temperatures have distinct germline stem cell lineage effects during Drosophila oogenesis.
Gandara A, Drummond-Barbosa D
Development. 2022; 149(5).
PMID: 35156684
PMC: 8959152.
DOI: 10.1242/dev.200149.
Synchronous and opponent thermosensors use flexible cross-inhibition to orchestrate thermal homeostasis.
Hernandez-Nunez L, Chen A, Budelli G, Berck M, Richter V, Rist A
Sci Adv. 2021; 7(35).
PMID: 34452914
PMC: 8397275.
DOI: 10.1126/sciadv.abg6707.