» Articles » PMID: 25609424

Anti-IL-6 Neutralizing Antibody Modulates Blood-brain Barrier Function in the Ovine Fetus

Overview
Journal FASEB J
Specialties Biology
Physiology
Date 2015 Jan 23
PMID 25609424
Citations 45
Authors
Affiliations
Soon will be listed here.
Abstract

Impaired blood-brain barrier function represents an important component of hypoxic-ischemic brain injury in the perinatal period. Proinflammatory cytokines could contribute to ischemia-related blood-brain barrier dysfunction. IL-6 increases vascular endothelial cell monolayer permeability in vitro. However, contributions of IL-6 to blood-brain barrier abnormalities have not been examined in the immature brain in vivo. We generated pharmacologic quantities of ovine-specific neutralizing anti-IL-6 mAbs and systemically infused mAbs into fetal sheep at 126 days of gestation after exposure to brain ischemia. Anti-IL-6 mAbs were measured by ELISA in fetal plasma, cerebral cortex, and cerebrospinal fluid, blood-brain barrier permeability was quantified using the blood-to-brain transfer constant in brain regions, and IL-6, tight junction proteins, and plasmalemma vesicle protein (PLVAP) were detected by Western immunoblot. Anti-IL-6 mAb infusions resulted in increases in mAb (P < 0.05) in plasma, brain parenchyma, and cerebrospinal fluid and decreases in brain IL-6 protein. Twenty-four hours after ischemia, anti-IL-6 mAb infusions attenuated ischemia-related increases in blood-brain barrier permeability and modulated tight junction and PLVAP protein expression in fetal brain. We conclude that inhibiting the effects of IL-6 protein with systemic infusions of neutralizing antibodies attenuates ischemia-related increases in blood-brain barrier permeability by inhibiting IL-6 and modulates tight junction proteins after ischemia.

Citing Articles

Protective effects of sesamol against cigarette smoke toxicity on the blood-brain barrier.

Koru I, Atasever-Arslan B BMC Complement Med Ther. 2025; 25(1):68.

PMID: 39987119 PMC: 11846467. DOI: 10.1186/s12906-025-04796-z.


Extracellular vesicles released by ALL patients contain HNE-adducted proteins: Implications of collateral damage.

Ho J, Sukati S, Taylor T, Carter S, Fuller B, Marmo A Free Radic Biol Med. 2024; 227:312-321.

PMID: 39643137 PMC: 11786608. DOI: 10.1016/j.freeradbiomed.2024.12.006.


Blood-brain barrier permeability increases with the differentiation of glioblastoma cells in vitro.

Digiovanni S, Lorenzati M, Bianciotto O, Godel M, Fontana S, Akman M Fluids Barriers CNS. 2024; 21(1):89.

PMID: 39487455 PMC: 11529439. DOI: 10.1186/s12987-024-00590-0.


Heyingwuzi formulation alleviates diabetic retinopathy by promoting mitophagy the HIF-1α/BNIP3/NIX axis.

Wu J, Zhang S, Mu L, Dong Z, Zhang Y World J Diabetes. 2024; 15(6):1317-1339.

PMID: 38983802 PMC: 11229969. DOI: 10.4239/wjd.v15.i6.1317.


Diving into the proteomic atlas of SARS-CoV-2 infected cells.

Carregari V, Reis-de-Oliveira G, Crunfli F, Smith B, Fabiano de Souza G, Muraro S Sci Rep. 2024; 14(1):7375.

PMID: 38548777 PMC: 10978884. DOI: 10.1038/s41598-024-56328-3.


References
1.
Bralet A, Beley A, Beley P, Bralet J . Brain edema and blood-brain barrier permeability following quantitative cerebral microembolism. Stroke. 1979; 10(1):34-8. DOI: 10.1161/01.str.10.1.34. View

2.
Stonestreet B, Goldstein M, Oh W, Widness J . Effects of prolonged hyperinsulinemia on erythropoiesis in fetal sheep. Am J Physiol. 1989; 257(5 Pt 2):R1199-204. DOI: 10.1152/ajpregu.1989.257.5.R1199. View

3.
Fischer S, Clauss M, Wiesnet M, Renz D, Schaper W, Karliczek G . Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am J Physiol. 1999; 276(4):C812-20. DOI: 10.1152/ajpcell.1999.276.4.C812. View

4.
Ron N, Kazianis J, Padbury J, Brown C, McGonnigal B, Sysyn G . Ontogeny and the effects of corticosteroid pretreatment on aquaporin water channels in the ovine cerebral cortex. Reprod Fertil Dev. 2005; 17(5):535-42. DOI: 10.1071/rd03044. View

5.
Chai Z, Gatti S, Toniatti C, Poli V, Bartfai T . Interleukin (IL)-6 gene expression in the central nervous system is necessary for fever response to lipopolysaccharide or IL-1 beta: a study on IL-6-deficient mice. J Exp Med. 1996; 183(1):311-6. PMC: 2192408. DOI: 10.1084/jem.183.1.311. View