» Articles » PMID: 25606064

PARP Inhibitors

Overview
Publisher Biomed Central
Specialty Oncology
Date 2015 Jan 22
PMID 25606064
Citations 20
Authors
Affiliations
Soon will be listed here.
Abstract

Poly (ADP-ribose) polymerases, abbreviated as PARPs, are a group of familiar proteins that play a central role in DNA repair employing the base excision repair (BER) pathway. There about 17 proteins in this family out of which the primary nuclear PARPs are PARP-1, PARP-2, PARP-3, and tankyrases 1 and 2 (PARP-5a and -5b) .The PARP family members are known to engage in a wide range of cellular activities, for example, DNA repair, transcription, cellular signaling, cell cycle regulation and mitosis amongst others. The chief functional units of PARP-1 are an amino terminal DNA binding domain (DBD), a central auto modification domain (AMD), and a carboxyl-terminal catalytic domain (CD). PARP inhibitors are currently undergoing clinical trials as targeted treatment modalities of breast, uterine, colorectal and ovarian cancer. This review summarizes current insights into the mechanism of action of PARP inhibitors, its recent clinical trials, and potential next steps in the evaluation of this promising class of anti-cancer drugs.

Citing Articles

ANP32B promotes colorectal cancer cell progression and reduces cell sensitivity to PRAP1 inhibitor through up-regulating HPF1.

Yang L, Li M, Huang W, Ren P, Yan Q, Hao Y Heliyon. 2024; 10(1):e23829.

PMID: 38192816 PMC: 10772160. DOI: 10.1016/j.heliyon.2023.e23829.


Polyadenosine diphosphate-ribose polymerase inhibitors: advances, implications, and challenges in tumor radiotherapy sensitization.

Zhang Y, Liang L, Li Z, Huang Y, Jiang M, Zou B Front Oncol. 2023; 13:1295579.

PMID: 38111536 PMC: 10726039. DOI: 10.3389/fonc.2023.1295579.


PARP-1: a critical regulator in radioprotection and radiotherapy-mechanisms, challenges, and therapeutic opportunities.

Li W, Wang F, Song G, Yu Q, Du R, Xu P Front Pharmacol. 2023; 14:1198948.

PMID: 37351512 PMC: 10283042. DOI: 10.3389/fphar.2023.1198948.


Differences in Extracellular NAD and NMN Metabolism on the Surface of Vascular Endothelial Cells.

Jablonska P, Mierzejewska P, Tomczyk M, Koszalka P, Franczak M, Kawecka A Biology (Basel). 2022; 11(5).

PMID: 35625403 PMC: 9137893. DOI: 10.3390/biology11050675.


Active Targeted Nanoparticles for Delivery of Poly(ADP-ribose) Polymerase (PARP) Inhibitors: A Preliminary Review.

Sargazi S, Mukhtar M, Rahdar A, Barani M, Pandey S, Diez-Pascual A Int J Mol Sci. 2021; 22(19).

PMID: 34638660 PMC: 8508934. DOI: 10.3390/ijms221910319.


References
1.
Ferraris D . Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J Med Chem. 2010; 53(12):4561-84. DOI: 10.1021/jm100012m. View

2.
Hakme A, Wong H, Dantzer F, Schreiber V . The expanding field of poly(ADP-ribosyl)ation reactions. 'Protein Modifications: Beyond the Usual Suspects' Review Series. EMBO Rep. 2008; 9(11):1094-100. PMC: 2581850. DOI: 10.1038/embor.2008.191. View

3.
Masutani M, Nakagama H, Sugimura T . Poly(ADP-ribosyl)ation in relation to cancer and autoimmune disease. Cell Mol Life Sci. 2005; 62(7-8):769-83. DOI: 10.1007/s00018-004-4509-x. View

4.
Davar D, Beumer J, Hamieh L, Tawbi H . Role of PARP inhibitors in cancer biology and therapy. Curr Med Chem. 2012; 19(23):3907-21. PMC: 3421454. DOI: 10.2174/092986712802002464. View

5.
Luo X, Kraus W . On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP-1. Genes Dev. 2012; 26(5):417-32. PMC: 3305980. DOI: 10.1101/gad.183509.111. View