» Articles » PMID: 25599550

DIA-Umpire: Comprehensive Computational Framework for Data-independent Acquisition Proteomics

Overview
Journal Nat Methods
Date 2015 Jan 20
PMID 25599550
Citations 285
Authors
Affiliations
Soon will be listed here.
Abstract

As a result of recent improvements in mass spectrometry (MS), there is increased interest in data-independent acquisition (DIA) strategies in which all peptides are systematically fragmented using wide mass-isolation windows ('multiplex fragmentation'). DIA-Umpire (http://diaumpire.sourceforge.net/), a comprehensive computational workflow and open-source software for DIA data, detects precursor and fragment chromatographic features and assembles them into pseudo-tandem MS spectra. These spectra can be identified with conventional database-searching and protein-inference tools, allowing sensitive, untargeted analysis of DIA data without the need for a spectral library. Quantification is done with both precursor- and fragment-ion intensities. Furthermore, DIA-Umpire enables targeted extraction of quantitative information based on peptides initially identified in only a subset of the samples, resulting in more consistent quantification across multiple samples. We demonstrated the performance of the method with control samples of varying complexity and publicly available glycoproteomics and affinity purification-MS data.

Citing Articles

In-depth plasma N-glycoproteome profiling using narrow-window data-independent acquisition on the Orbitrap Astral mass spectrometer.

Jager S, Zeller M, Pashkova A, Schulte D, Damoc E, Reiding K Nat Commun. 2025; 16(1):2497.

PMID: 40082474 PMC: 11906852. DOI: 10.1038/s41467-025-57916-1.


Proteoform identification using multiplexed top-down mass spectra.

Wang Z, Xiong X, Liu X bioRxiv. 2025; .

PMID: 39975217 PMC: 11839095. DOI: 10.1101/2025.02.05.636727.


Enhanced Discovery of Alternative Proteins (AltProts) in Mouse Cardiac Development Using Data-Independent Acquisition (DIA) Proteomics.

Zhang Y, Yang Y, Li K, Chen L, Yang Y, Yang C Anal Chem. 2025; 97(3):1517-1527.

PMID: 39813267 PMC: 11781309. DOI: 10.1021/acs.analchem.4c02924.


diaTracer enables spectrum-centric analysis of diaPASEF proteomics data.

Li K, Teo G, Yang K, Yu F, Nesvizhskii A Nat Commun. 2025; 16(1):95.

PMID: 39747075 PMC: 11696033. DOI: 10.1038/s41467-024-55448-8.


A commonly inherited human PCSK9 germline variant drives breast cancer metastasis via LRP1 receptor.

Mei W, Faraj Tabrizi S, Godina C, Lovisa A, Isaksson K, Jernstrom H Cell. 2024; 188(2):371-389.e28.

PMID: 39657676 PMC: 11770377. DOI: 10.1016/j.cell.2024.11.009.


References
1.
Chambers M, MacLean B, Burke R, Amodei D, Ruderman D, Neumann S . A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012; 30(10):918-20. PMC: 3471674. DOI: 10.1038/nbt.2377. View

2.
Michalski A, Cox J, Mann M . More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. J Proteome Res. 2011; 10(4):1785-93. DOI: 10.1021/pr101060v. View

3.
Nesvizhskii A . A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J Proteomics. 2010; 73(11):2092-123. PMC: 2956504. DOI: 10.1016/j.jprot.2010.08.009. View

4.
Tautenhahn R, Bottcher C, Neumann S . Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics. 2008; 9:504. PMC: 2639432. DOI: 10.1186/1471-2105-9-504. View

5.
Li G, Vissers J, Silva J, Golick D, Gorenstein M, Geromanos S . Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. Proteomics. 2009; 9(6):1696-719. DOI: 10.1002/pmic.200800564. View