Thiono D, Samaras D, Phan T, Zhu D, Shah R, Castillo I
bioRxiv. 2025; .
PMID: 39990303
PMC: 11844416.
DOI: 10.1101/2024.07.18.604114.
Hickman H, Moutsopoulos N
Nat Rev Immunol. 2024; .
PMID: 39533045
DOI: 10.1038/s41577-024-01100-x.
Pei L, Hickman H
Viruses. 2024; 16(5).
PMID: 38793562
PMC: 11126121.
DOI: 10.3390/v16050679.
Munt J, Henein S, Adams C, Young E, Hou Y, Conrad H
Cell Host Microbe. 2023; 31(11):1850-1865.e5.
PMID: 37909048
PMC: 11221912.
DOI: 10.1016/j.chom.2023.10.004.
Burton D
Nat Rev Immunol. 2023; 23(11):720-734.
PMID: 37069260
PMC: 10108814.
DOI: 10.1038/s41577-023-00858-w.
The Japanese Encephalitis Antigenic Complex Viruses: From Structure to Immunity.
Khare B, Kuhn R
Viruses. 2022; 14(10).
PMID: 36298768
PMC: 9607441.
DOI: 10.3390/v14102213.
Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains.
Case J, Mackin S, Errico J, Chong Z, Madden E, Whitener B
Nat Commun. 2022; 13(1):3824.
PMID: 35780162
PMC: 9250508.
DOI: 10.1038/s41467-022-31615-7.
Reappraising the Value of HIV-1 Vaccine Correlates of Protection Analyses.
Klasse P, Moore J
J Virol. 2022; 96(8):e0003422.
PMID: 35384694
PMC: 9044961.
DOI: 10.1128/jvi.00034-22.
Near-germline human monoclonal antibodies neutralize and protect against multiple arthritogenic alphaviruses.
Malonis R, Earnest J, Kim A, Angeliadis M, Holtsberg F, Aman M
Proc Natl Acad Sci U S A. 2021; 118(37).
PMID: 34507983
PMC: 8449321.
DOI: 10.1073/pnas.2100104118.
The total number and mass of SARS-CoV-2 virions.
Sender R, Bar-On Y, Gleizer S, Bernshtein B, Flamholz A, Phillips R
Proc Natl Acad Sci U S A. 2021; 118(25).
PMID: 34083352
PMC: 8237675.
DOI: 10.1073/pnas.2024815118.
In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains.
Diamond M, Chen R, Winkler E, Case J, Aziati I, Bricker T
Res Sq. 2021; .
PMID: 34013259
PMC: 8132254.
DOI: 10.21203/rs.3.rs-448370/v1.
Patient-blood management for COVID19 convalescent plasma therapy: relevance of affinity and donor-recipient differences in concentration of neutralizing antibodies.
Focosi D, Maggi F, Franchini M, Aguzzi A, Lanza M, Mazzoni A
Clin Microbiol Infect. 2021; 27(7):987-992.
PMID: 33878505
PMC: 8052606.
DOI: 10.1016/j.cmi.2021.04.003.
Using the antibody-antigen binding interface to train image-based deep neural networks for antibody-epitope classification.
Ripoll D, Chaudhury S, Wallqvist A
PLoS Comput Biol. 2021; 17(3):e1008864.
PMID: 33780441
PMC: 8032195.
DOI: 10.1371/journal.pcbi.1008864.
Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection.
Winkler E, Gilchuk P, Yu J, Bailey A, Chen R, Chong Z
Cell. 2021; 184(7):1804-1820.e16.
PMID: 33691139
PMC: 7879018.
DOI: 10.1016/j.cell.2021.02.026.
The Influence of Immune Immaturity on Outcome After Virus Infections.
Shaw E, Su H
J Allergy Clin Immunol Pract. 2021; 9(2):641-650.
PMID: 33551039
PMC: 8042246.
DOI: 10.1016/j.jaip.2020.11.016.
The total number and mass of SARS-CoV-2 virions.
Sender R, Bar-On Y, Gleizer S, Bernsthein B, Flamholz A, Phillips R
medRxiv. 2020; .
PMID: 33236021
PMC: 7685332.
DOI: 10.1101/2020.11.16.20232009.
The Neutralizing Antibody Response Elicited by Tembusu Virus Is Affected Dramatically by a Single Mutation in the Stem Region of the Envelope Protein.
Lv J, Liu X, Cui S, Yang L, Qu S, Meng R
Front Microbiol. 2020; 11:585194.
PMID: 33193231
PMC: 7642334.
DOI: 10.3389/fmicb.2020.585194.
Mapping the diverse structural landscape of the flavivirus antibody repertoire.
Sevvana M, Kuhn R
Curr Opin Virol. 2020; 45:51-64.
PMID: 32801077
PMC: 7746604.
DOI: 10.1016/j.coviro.2020.07.006.
Antibodies to SARS-CoV-2 and their potential for therapeutic passive immunization.
Klasse P, Moore J
Elife. 2020; 9.
PMID: 32573433
PMC: 7311167.
DOI: 10.7554/eLife.57877.
Identification of a Neutralizing Monoclonal Antibody That Recognizes a Unique Epitope on Domain III of the Envelope Protein of Tembusu Virus.
Qu S, Wang X, Yang L, Lv J, Meng R, Dai W
Viruses. 2020; 12(6).
PMID: 32549221
PMC: 7354527.
DOI: 10.3390/v12060647.