Colombani T, Eggermont L, Hatfield S, Rogers Z, Rezaeeyazdi M, Memic A
Adv Funct Mater. 2023; 31(37).
PMID: 37745940
PMC: 10516343.
DOI: 10.1002/adfm.202102234.
Lee K, Yam J, Mao X
Cells. 2023; 12(17).
PMID: 37681880
PMC: 10486560.
DOI: 10.3390/cells12172147.
Bo Y, Wang H
Adv Mater. 2023; 36(43):e2210452.
PMID: 36649567
PMC: 10408245.
DOI: 10.1002/adma.202210452.
Liu J, Yu Y, Liu C, Gao C, Zhuang J, Liu L
Front Pharmacol. 2022; 13:1035954.
PMID: 36304169
PMC: 9593050.
DOI: 10.3389/fphar.2022.1035954.
Han J, Bhatta R, Liu Y, Bo Y, Wang H
Front Pharmacol. 2022; 13:954955.
PMID: 36081933
PMC: 9445184.
DOI: 10.3389/fphar.2022.954955.
Engineered biomaterials for cancer immunotherapy.
Cai L, Xu J, Yang Z, Tong R, Dong Z, Wang C
MedComm (2020). 2021; 1(1):35-46.
PMID: 34766108
PMC: 8489675.
DOI: 10.1002/mco2.8.
Smart exosomes with lymph node homing and immune-amplifying capacities for enhanced immunotherapy of metastatic breast cancer.
Ji P, Yang Z, Li H, Wei M, Yang G, Xing H
Mol Ther Nucleic Acids. 2021; 26:987-996.
PMID: 34760340
PMC: 8560825.
DOI: 10.1016/j.omtn.2021.10.009.
Engineering Therapeutic Strategies in Cancer Immunotherapy via Exogenous Delivery of Toll-like Receptor Agonists.
Jeong S, Choi Y, Kim K
Pharmaceutics. 2021; 13(9).
PMID: 34575449
PMC: 8466827.
DOI: 10.3390/pharmaceutics13091374.
Tertiary Lymphoid Structures in Cancer: The Double-Edged Sword Role in Antitumor Immunity and Potential Therapeutic Induction Strategies.
Kang W, Feng Z, Luo J, He Z, Liu J, Wu J
Front Immunol. 2021; 12:689270.
PMID: 34394083
PMC: 8358404.
DOI: 10.3389/fimmu.2021.689270.
Advances in engineering local drug delivery systems for cancer immunotherapy.
Abdou P, Wang Z, Chen Q, Chan A, Zhou D, Gunadhi V
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2020; 12(5):e1632.
PMID: 32255276
PMC: 7725287.
DOI: 10.1002/wnan.1632.
Engineering Nanoparticles to Reprogram the Tumor Immune Microenvironment for Improved Cancer Immunotherapy.
Saeed M, Gao J, Shi Y, Lammers T, Yu H
Theranostics. 2019; 9(26):7981-8000.
PMID: 31754376
PMC: 6857062.
DOI: 10.7150/thno.37568.
Decellularized Lymph Node Scaffolding as a Carrier for Dendritic Cells to Induce Anti-Tumor Immunity.
Lin H, Wang W, Huang Y, Liao W, Lin T, Lin S
Pharmaceutics. 2019; 11(11).
PMID: 31717826
PMC: 6920996.
DOI: 10.3390/pharmaceutics11110553.
Flexible Macromolecule versus Rigid Particle Retention in the Injected Skin and Accumulation in Draining Lymph Nodes Are Differentially Influenced by Hydrodynamic Size.
Rohner N, Thomas S
ACS Biomater Sci Eng. 2018; 3(2):153-159.
PMID: 29888321
PMC: 5990040.
DOI: 10.1021/acsbiomaterials.6b00438.
Co-delivery of tumor antigen and dual toll-like receptor ligands into dendritic cell by silicon microparticle enables efficient immunotherapy against melanoma.
Zhu M, Ding X, Zhao R, Liu X, Shen H, Cai C
J Control Release. 2018; 272:72-82.
PMID: 29325699
PMC: 5825289.
DOI: 10.1016/j.jconrel.2018.01.004.
Systematic Screening of Chemokines to Identify Candidates to Model and Create Ectopic Lymph Node Structures for Cancer Immunotherapy.
Yagawa Y, Robertson-Tessi M, Zhou S, Anderson A, Mule J, Mailloux A
Sci Rep. 2017; 7(1):15996.
PMID: 29167448
PMC: 5700067.
DOI: 10.1038/s41598-017-15924-2.
Tumor-Associated Tertiary Lymphoid Structures: Gene-Expression Profiling and Their Bioengineering.
Zhu G, Falahat R, Wang K, Mailloux A, Artzi N, Mule J
Front Immunol. 2017; 8:767.
PMID: 28713385
PMC: 5491937.
DOI: 10.3389/fimmu.2017.00767.
Alginate Particles with Ovalbumin (OVA) Peptide Can Serve as a Carrier and Adjuvant for Immune Therapy in B16-OVA Cancer Model.
Zhu L, Ge F, Yang L, Li W, Wei S, Tao Y
Med Sci Monit Basic Res. 2017; 23:166-172.
PMID: 28450696
PMC: 5421747.
DOI: 10.12659/msmbr.901576.