» Articles » PMID: 25001465

Therapeutic Vaccines for Cancer: an Overview of Clinical Trials

Overview
Specialty Oncology
Date 2014 Jul 9
PMID 25001465
Citations 361
Authors
Affiliations
Soon will be listed here.
Abstract

The therapeutic potential of host-specific and tumour-specific immune responses is well recognized and, after many years, active immunotherapies directed at inducing or augmenting these responses are entering clinical practice. Antitumour immunization is a complex, multi-component task, and the optimal combinations of antigens, adjuvants, delivery vehicles and routes of administration are not yet identified. Active immunotherapy must also address the immunosuppressive and tolerogenic mechanisms deployed by tumours. This Review provides an overview of new results from clinical studies of therapeutic cancer vaccines directed against tumour-associated antigens and discusses their implications for the use of active immunotherapy.

Citing Articles

Advancement insights in cancer vaccines: mechanisms, types, and clinical applications.

Kamel G, Attia R, Al-Noman H, Salama L Mol Biol Rep. 2025; 52(1):290.

PMID: 40053260 DOI: 10.1007/s11033-025-10370-0.


Cancer Vaccines and Beyond: The Transformative Role of Nanotechnology in Immunotherapy.

Delgado-Almenta V, Blaya-Canovas J, Calahorra J, Lopez-Tejada A, Grinan-Lison C, Granados-Principal S Pharmaceutics. 2025; 17(2).

PMID: 40006583 PMC: 11859086. DOI: 10.3390/pharmaceutics17020216.


Respiratory delivered vaccines: Current status and perspectives in rational formulation design.

Wu L, Xu W, Jiang H, Yang M, Cun D Acta Pharm Sin B. 2025; 14(12):5132-5160.

PMID: 39807330 PMC: 11725141. DOI: 10.1016/j.apsb.2024.08.026.


Metformin-based nanomedicines for reprogramming tumor immune microenvironment.

Liu J, Li X, Li Y, Gong Q, Luo K Theranostics. 2025; 15(3):993-1016.

PMID: 39776799 PMC: 11700864. DOI: 10.7150/thno.104872.


Whole-Cell Vaccine Preparation Through Prussian Blue Nanoparticles-Elicited Immunogenic Cell Death and Loading in Gel Microneedles Patches.

Fu W, Li Q, Sheng J, Wu H, Ma M, Zhang Y Gels. 2024; 10(12).

PMID: 39727596 PMC: 11675167. DOI: 10.3390/gels10120838.


References
1.
DeNardo D, Brennan D, Rexhepaj E, Ruffell B, Shiao S, Madden S . Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011; 1(1):54-67. PMC: 3203524. DOI: 10.1158/2159-8274.CD-10-0028. View

2.
Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T . FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res. 2007; 13(3):902-11. DOI: 10.1158/1078-0432.CCR-06-2363. View

3.
Baron C, Raposo G, Scholl S, Bausinger H, Tenza D, Bohbot A . Modulation of MHC class II transport and lysosome distribution by macrophage-colony stimulating factor in human dendritic cells derived from monocytes. J Cell Sci. 2001; 114(Pt 5):999-1010. DOI: 10.1242/jcs.114.5.999. View

4.
Oka Y, Tsuboi A, Taguchi T, Osaki T, Kyo T, Nakajima H . Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci U S A. 2004; 101(38):13885-90. PMC: 518848. DOI: 10.1073/pnas.0405884101. View

5.
Correale P, Rotundo M, Del Vecchio M, Remondo C, Migali C, Ginanneschi C . Regulatory (FoxP3+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo or chemoimmunotherapy. J Immunother. 2010; 33(4):435-41. PMC: 7322625. DOI: 10.1097/CJI.0b013e3181d32f01. View