» Articles » PMID: 25574372

New Chemical Probes Targeting Cholesterylation of Sonic Hedgehog in Human Cells and Zebrafish

Overview
Journal Chem Sci
Specialty Chemistry
Date 2015 Jan 10
PMID 25574372
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

Sonic Hedgehog protein (Shh) is a morphogen molecule important in embryonic development and in the progression of many cancer types in which it is aberrantly overexpressed. Fully mature Shh requires attachment of cholesterol and palmitic acid to its C- and N-termini, respectively. The study of lipidated Shh has been challenging due to the limited array of tools available, and the roles of these posttranslational modifications are poorly understood. Herein, we describe the development and validation of optimised alkynyl sterol probes that efficiently tag Shh cholesterylation and enable its visualisation and analysis through bioorthogonal ligation to reporters. An optimised probe was shown to be an excellent cholesterol biomimetic in the context of Shh, enabling appropriate release of tagged Shh from signalling cells, formation of multimeric transport complexes and signalling. We have used this probe to determine the size of transport complexes of lipidated Shh in culture medium and expression levels of endogenous lipidated Shh in pancreatic ductal adenocarcinoma cell lines through quantitative chemical proteomics, as well as direct visualisation of the probe by fluorescence microscopy and detection of cholesterylated Hedgehog protein in developing zebrafish embryos. These sterol probes provide a set of novel and well-validated tools that can be used to investigate the role of lipidation on activity of Shh, and potentially other members of the Hedgehog protein family.

Citing Articles

Regulation of autophagy by protein lipidation.

Shao Y, Hu J, Li H, Lu K Adv Biotechnol (Singap). 2025; 2(4):33.

PMID: 39883197 PMC: 11709147. DOI: 10.1007/s44307-024-00040-w.


Research progress on the molecular mechanisms of Saikosaponin D in various diseases (Review).

Gu S, Zheng Y, Chen C, Liu J, Wang Y, Wang J Int J Mol Med. 2024; 55(3.

PMID: 39717942 PMC: 11722148. DOI: 10.3892/ijmm.2024.5478.


Therapeutic Target Identification and Drug Discovery Driven by Chemical Proteomics.

Zou M, Zhou H, Gu L, Zhang J, Fang L Biology (Basel). 2024; 13(8).

PMID: 39194493 PMC: 11352082. DOI: 10.3390/biology13080555.


Design, Synthesis, and Evaluation of Inhibitors of Hedgehog Acyltransferase.

Ritzefeld M, Zhang L, Xiao Z, Andrei S, Boyd O, Masumoto N J Med Chem. 2024; 67(2):1061-1078.

PMID: 38198226 PMC: 10823475. DOI: 10.1021/acs.jmedchem.3c01363.


Exploring protein lipidation by mass spectrometry-based proteomics.

Tsumagari K, Isobe Y, Imami K, Arita M J Biochem. 2023; 175(3):225-233.

PMID: 38102731 PMC: 10908362. DOI: 10.1093/jb/mvad109.


References
1.
Nachtergaele S, Mydock L, Krishnan K, Rammohan J, Schlesinger P, Covey D . Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat Chem Biol. 2012; 8(2):211-20. PMC: 3262054. DOI: 10.1038/nchembio.765. View

2.
Bolte S, Cordelieres F . A guided tour into subcellular colocalization analysis in light microscopy. J Microsc. 2007; 224(Pt 3):213-32. DOI: 10.1111/j.1365-2818.2006.01706.x. View

3.
Lewis P, Dunn M, McMahon J, Logan M, Martin J, St-Jacques B . Cholesterol modification of sonic hedgehog is required for long-range signaling activity and effective modulation of signaling by Ptc1. Cell. 2001; 105(5):599-612. DOI: 10.1016/s0092-8674(01)00369-5. View

4.
Bailey J, Swanson B, Hamada T, Eggers J, Singh P, Caffery T . Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res. 2008; 14(19):5995-6004. PMC: 2782957. DOI: 10.1158/1078-0432.CCR-08-0291. View

5.
Heal W, Jovanovic B, Bessin S, Wright M, Magee A, Tate E . Bioorthogonal chemical tagging of protein cholesterylation in living cells. Chem Commun (Camb). 2011; 47(14):4081-3. DOI: 10.1039/c0cc04710d. View