» Articles » PMID: 25550462

P38α Function in Osteoblasts Influences Adipose Tissue Homeostasis

Overview
Journal FASEB J
Specialties Biology
Physiology
Date 2015 Jan 1
PMID 25550462
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

The skeleton acts as an endocrine organ that regulates energy metabolism and calcium and phosphorous homeostasis through the secretion of osteocalcin (Oc) and fibroblast growth factor 23 (FGF23). However, evidence suggests that osteoblasts secrete additional unknown factors that contribute to the endocrine function of bone. To search for these additional factors, we generated mice with a conditional osteoblast-specific deletion of p38α MAPK known to display profound defects in bone homeostasis. Herein, we show that impaired osteoblast function is associated with a strong decrease in body weight and adiposity (P < 0.01). The differences in adiposity were not associated with diminished caloric intake, but rather reflected 20% increased energy expenditure and the up-regulation of uncoupling protein-1 (Ucp1) in white adipose tissue (WAT) and brown adipose tissue (BAT) (P < 0.05). These alterations in lipid metabolism and energy expenditure were correlated with a decrease in the blood levels of neuropeptide Y (NPY) (40% lower) rather than changes in the serum levels of insulin, Oc, or FGF23. Among all Npy-expressing tissues, only bone and primary osteoblasts showed a decline in Npy expression (P < 0.01). Moreover, the intraperitoneal administration of recombinant NPY partially restored the WAT weight and adipocyte size of p38α-deficient mice (P < 0.05). Altogether, these results further suggest that, in addition to Oc, other bone-derived signals affect WAT and energy expenditure contributing to the regulation of energy metabolism.

Citing Articles

Divergent effects of peripheral and global neuropeptide Y deletion.

Wee N, Vrhovac Madunic I, Ivanisevic T, Sinder B, Kalajzic I J Musculoskelet Neuronal Interact. 2020; 20(4):579-590.

PMID: 33265087 PMC: 7716695.


Energy Metabolism of Bone.

Motyl K, Guntur A, Carvalho A, Rosen C Toxicol Pathol. 2017; 45(7):887-893.

PMID: 29096593 PMC: 5777524. DOI: 10.1177/0192623317737065.


Bone Cell Bioenergetics and Skeletal Energy Homeostasis.

Riddle R, Clemens T Physiol Rev. 2017; 97(2):667-698.

PMID: 28202599 PMC: 5539406. DOI: 10.1152/physrev.00022.2016.


Recent advances in the understanding of how neuropeptide Y and -melanocyte stimulating hormone function in adipose physiology.

Shipp S, Cline M, Gilbert E Adipocyte. 2016; 5(4):333-350.

PMID: 27994947 PMC: 5160404. DOI: 10.1080/21623945.2016.1208867.


p38 MAPK Signaling in Osteoblast Differentiation.

Rodriguez-Carballo E, Gamez B, Ventura F Front Cell Dev Biol. 2016; 4:40.

PMID: 27200351 PMC: 4858538. DOI: 10.3389/fcell.2016.00040.