Bolzico B, Racca S, Khawam J, Leonardi R, Tomassi A, Benzzo M
J Ind Microbiol Biotechnol. 2024; 51.
PMID: 38936832
PMC: 11247345.
DOI: 10.1093/jimb/kuae023.
Topaloglu A, Esen O, Turanli-Yildiz B, Arslan M, Cakar Z
J Fungi (Basel). 2023; 9(10).
PMID: 37888240
PMC: 10607480.
DOI: 10.3390/jof9100984.
Trivedi V, Sullivan S, Choudhury D, Endalur Gopinarayanan V, Hart T, Nair N
Cell Chem Biol. 2023; 30(9):1135-1143.e5.
PMID: 37421944
PMC: 10529486.
DOI: 10.1016/j.chembiol.2023.06.009.
Wang H, Cao L, Li Q, Wijayawardene N, Zhao J, Cheng M
Front Microbiol. 2023; 13:1085114.
PMID: 36601405
PMC: 9807136.
DOI: 10.3389/fmicb.2022.1085114.
Broda M, Yelle D, Serwanska K
Molecules. 2022; 27(24).
PMID: 36557852
PMC: 9785513.
DOI: 10.3390/molecules27248717.
Deletion of in a recombinant improved xylose utilization and affected transcription of genes related to amino acid metabolism.
Cheng C, Wang W, Sun M, Tang R, Bai L, Alper H
Front Microbiol. 2022; 13:960114.
PMID: 36160216
PMC: 9493327.
DOI: 10.3389/fmicb.2022.960114.
Response mechanisms of Saccharomyces cerevisiae to the stress factors present in lignocellulose hydrolysate and strategies for constructing robust strains.
Li B, Liu N, Zhao X
Biotechnol Biofuels Bioprod. 2022; 15(1):28.
PMID: 35292082
PMC: 8922928.
DOI: 10.1186/s13068-022-02127-9.
CRISPRi screens reveal genes modulating yeast growth in lignocellulose hydrolysate.
Gutmann F, Jann C, Pereira F, Johansson A, Steinmetz L, Patil K
Biotechnol Biofuels. 2021; 14(1):41.
PMID: 33568224
PMC: 7874482.
DOI: 10.1186/s13068-021-01880-7.
Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges.
Adegboye M, Bernard Ojuederie O, Talia P, Babalola O
Biotechnol Biofuels. 2021; 14(1):5.
PMID: 33407786
PMC: 7788794.
DOI: 10.1186/s13068-020-01853-2.
Engineered for lignocellulosic valorization: a review and perspectives on bioethanol production.
Cunha J, Soares P, Baptista S, Costa C, Domingues L
Bioengineered. 2020; 11(1):883-903.
PMID: 32799606
PMC: 8291843.
DOI: 10.1080/21655979.2020.1801178.
Consolidated bioprocessing of corn cob-derived hemicellulose: engineered industrial as efficient whole cell biocatalysts.
Cunha J, Romani A, Inokuma K, Johansson B, Hasunuma T, Kondo A
Biotechnol Biofuels. 2020; 13:138.
PMID: 32782474
PMC: 7414751.
DOI: 10.1186/s13068-020-01780-2.
Improved simultaneous co-fermentation of glucose and xylose by for efficient lignocellulosic biorefinery.
Hoang Nguyen Tran P, Ko J, Gong G, Um Y, Lee S
Biotechnol Biofuels. 2020; 13:12.
PMID: 31993090
PMC: 6975041.
DOI: 10.1186/s13068-019-1641-2.
Heterologous secretory expression of β-glucosidase from Thermoascus aurantiacus in industrial Saccharomyces cerevisiae strains.
Smekenov I, Bakhtambayeva M, Bissenbayev K, Saparbayev M, Taipakova S, Bissenbaev A
Braz J Microbiol. 2019; 51(1):107-123.
PMID: 31776864
PMC: 7058725.
DOI: 10.1007/s42770-019-00192-1.
Physiology of yeast strains isolated from Brazilian biomes in a minimal medium using fructose as the sole carbon source reveals potential biotechnological applications.
Andrade Silva C, Oka M, Fonseca G
3 Biotech. 2019; 9(5):191.
PMID: 31065491
PMC: 6485269.
DOI: 10.1007/s13205-019-1721-9.
Xylose fermentation efficiency of industrial yeast with separate or combined xylose reductase/xylitol dehydrogenase and xylose isomerase pathways.
Cunha J, Soares P, Romani A, Thevelein J, Domingues L
Biotechnol Biofuels. 2019; 12:20.
PMID: 30705706
PMC: 6348659.
DOI: 10.1186/s13068-019-1360-8.
Genomic and phenotypic characterization of a refactored xylose-utilizing strain for lignocellulosic biofuel production.
Tran Nguyen Hoang P, Ko J, Gong G, Um Y, Lee S
Biotechnol Biofuels. 2018; 11:268.
PMID: 30288173
PMC: 6162923.
DOI: 10.1186/s13068-018-1269-7.
Improved secretory expression of lignocellulolytic enzymes in by promoter and signal sequence engineering.
Zhou J, Zhu P, Hu X, Lu H, Yu Y
Biotechnol Biofuels. 2018; 11:235.
PMID: 30279722
PMC: 6116501.
DOI: 10.1186/s13068-018-1232-7.
Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates.
Lopes D, Rosa C, Hector R, Dien B, Mertens J, Ayub M
J Ind Microbiol Biotechnol. 2017; 44(11):1575-1588.
PMID: 28891041
DOI: 10.1007/s10295-017-1979-z.
Engineering a wild-type diploid strain for second-generation bioethanol production.
Li H, Shen Y, Wu M, Hou J, Jiao C, Li Z
Bioresour Bioprocess. 2016; 3(1):51.
PMID: 27942436
PMC: 5122614.
DOI: 10.1186/s40643-016-0126-4.
Improving pentose fermentation by preventing ubiquitination of hexose transporters in Saccharomyces cerevisiae.
Nijland J, Vos E, Shin H, de Waal P, Klaassen P, Driessen A
Biotechnol Biofuels. 2016; 9:158.
PMID: 27468310
PMC: 4962381.
DOI: 10.1186/s13068-016-0573-3.