» Articles » PMID: 25517223

High-quality Genome (re)assembly Using Chromosomal Contact Data

Overview
Journal Nat Commun
Specialty Biology
Date 2014 Dec 18
PMID 25517223
Citations 76
Authors
Affiliations
Soon will be listed here.
Abstract

Closing gaps in draft genome assemblies can be costly and time-consuming, and published genomes are therefore often left 'unfinished.' Here we show that genome-wide chromosome conformation capture (3C) data can be used to overcome these limitations, and present a computational approach rooted in polymer physics that determines the most likely genome structure using chromosomal contact data. This algorithm--named GRAAL--generates high-quality assemblies of genomes in which repeated and duplicated regions are accurately represented and offers a direct probabilistic interpretation of the computed structures. We first validated GRAAL on the reference genome of Saccharomyces cerevisiae, as well as other yeast isolates, where GRAAL recovered both known and unknown complex chromosomal structural variations. We then applied GRAAL to the finishing of the assembly of Trichoderma reesei and obtained a number of contigs congruent with the know karyotype of this species. Finally, we showed that GRAAL can accurately reconstruct human chromosomes from either fragments generated in silico or contigs obtained from de novo assembly. In all these applications, GRAAL compared favourably to recently published programmes implementing related approaches.

Citing Articles

A chromosome-scale genome assembly of mungbean ().

Khanbo S, Phadphon P, Naktang C, Sangsrakru D, Waiyamitra P, Narong N PeerJ. 2024; 12:e18771.

PMID: 39726742 PMC: 11670757. DOI: 10.7717/peerj.18771.


Benchmarking of Hi-C tools for scaffolding plant genomes obtained from PacBio HiFi and ONT reads.

Obinu L, Trivedi U, Porceddu A Front Bioinform. 2024; 4:1462923.

PMID: 39619774 PMC: 11604747. DOI: 10.3389/fbinf.2024.1462923.


A deep learning-based method enables the automatic and accurate assembly of chromosome-level genomes.

Jiang Z, Peng Z, Wei Z, Sun J, Luo Y, Bie L Nucleic Acids Res. 2024; 52(19):e92.

PMID: 39287126 PMC: 11514472. DOI: 10.1093/nar/gkae789.


Unique territorial and compartmental organization of chromosomes in the holocentric silkmoth.

Gil Jr J, Navarrete E, Rosin L, Chowdhury N, Abraham S, Cornilleau G Res Sq. 2024; .

PMID: 39149482 PMC: 11326380. DOI: 10.21203/rs.3.rs-4732646/v1.


Insights into early animal evolution from the genome of the xenacoelomorph worm .

Schiffer P, Natsidis P, Leite D, Robertson H, Lapraz F, Marletaz F Elife. 2024; 13.

PMID: 39109482 PMC: 11521371. DOI: 10.7554/eLife.94948.


References
1.
Karakoc E, Alkan C, ORoak B, Dennis M, Vives L, Mark K . Detection of structural variants and indels within exome data. Nat Methods. 2011; 9(2):176-8. PMC: 3269549. DOI: 10.1038/nmeth.1810. View

2.
Rieping W, Habeck M, Nilges M . Inferential structure determination. Science. 2005; 309(5732):303-6. DOI: 10.1126/science.1110428. View

3.
Carter G, Allison D, Rey M, Dunn-Coleman N . Chromosomal and genetic analysis of the electrophoretic karyotype of Trichoderma reesei: mapping of the cellulase and xylanase genes. Mol Microbiol. 1992; 6(15):2167-74. DOI: 10.1111/j.1365-2958.1992.tb01390.x. View

4.
Goffeau A, Barrell B, Bussey H, Davis R, Dujon B, Feldmann H . Life with 6000 genes. Science. 1996; 274(5287):546, 563-7. DOI: 10.1126/science.274.5287.546. View

5.
Mantyla A, Rossi K, Vanhanen S, Penttila M, Suominen P, Nevalainen K . Electrophoretic karyotyping of wild-type and mutant Trichoderma longibrachiatum (reesei) strains. Curr Genet. 1992; 21(6):471-7. DOI: 10.1007/BF00351657. View