» Articles » PMID: 2550802

Micronuclear Genome Organization in Euplotes Crassus: a Transposonlike Element is Removed During Macronuclear Development

Overview
Journal Mol Cell Biol
Specialty Cell Biology
Date 1989 Sep 1
PMID 2550802
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

After mating, hypotrichous ciliated protozoa transform a set of their micronuclear chromosomes into thousands of short, linear DNA molecules that form the macronuclear genome. To examine micronuclear genome organization in the hypotrich Euplotes crassus, we have analyzed two cloned segments of micronuclear DNA as well as the macronuclear DNA molecules that are derived from them. E. crassus was found to display a number of features characteristic of other hypotrich genomes, including (i) clustering and close spacing of the precursors of macronuclear DNA molecules, (ii) the frequent occurrence of internal eliminated sequences within macronuclear precursors, (iii) overlapping macronuclear precursors, (iv) lack of telomeric repeats at the ends of macronuclear precursors, and (v) alternative processing of the micronuclear chromosome to yield multiple macronuclear DNA molecules. In addition, a moderately repetitive, transposonlike element that interrupts the precursors of two macronuclear DNA molecules has been identified and characterized. This transposonlike element, designated Tec1, is shown to be reproducibly removed from one of the macronuclear precursors during independent episodes of macronuclear development.

Citing Articles

Programmed chromosome fragmentation in ciliated protozoa: multiple means to chromosome ends.

Betermier M, Klobutcher L, Orias E Microbiol Mol Biol Rev. 2023; 87(4):e0018422.

PMID: 38009915 PMC: 10732028. DOI: 10.1128/mmbr.00184-22.


Comparative genomics reveals insight into the evolutionary origin of massively scrambled genomes.

Feng Y, Neme R, Beh L, Chen X, Braun J, Lu M Elife. 2022; 11.

PMID: 36421078 PMC: 9797194. DOI: 10.7554/eLife.82979.


Programmed genome rearrangements in ciliates.

Rzeszutek I, Maurer-Alcala X, Nowacki M Cell Mol Life Sci. 2020; 77(22):4615-4629.

PMID: 32462406 PMC: 7599177. DOI: 10.1007/s00018-020-03555-2.


Twisted Tales: Insights into Genome Diversity of Ciliates Using Single-Cell 'Omics.

Maurer-Alcala X, Yan Y, Pilling O, Knight R, Katz L Genome Biol Evol. 2018; 10(8):1927-1939.

PMID: 29945193 PMC: 6101598. DOI: 10.1093/gbe/evy133.


Epigenetics of ciliates.

Chalker D, Meyer E, Mochizuki K Cold Spring Harb Perspect Biol. 2013; 5(12):a017764.

PMID: 24296171 PMC: 3839606. DOI: 10.1101/cshperspect.a017764.


References
1.
Herrick G, Cartinhour S, Dawson D, Ang D, Sheets R, Lee A . Mobile elements bounded by C4A4 telomeric repeats in Oxytricha fallax. Cell. 1985; 43(3 Pt 2):759-68. DOI: 10.1016/0092-8674(85)90249-1. View

2.
Shepherd J . Method to determine the reading frame of a protein from the purine/pyrimidine genome sequence and its possible evolutionary justification. Proc Natl Acad Sci U S A. 1981; 78(3):1596-600. PMC: 319178. DOI: 10.1073/pnas.78.3.1596. View

3.
Frischauf A, Lehrach H, Poustka A, Murray N . Lambda replacement vectors carrying polylinker sequences. J Mol Biol. 1983; 170(4):827-42. DOI: 10.1016/s0022-2836(83)80190-9. View

4.
Baird S, Klobutcher L . Characterization of chromosome fragmentation in two protozoans and identification of a candidate fragmentation sequence in Euplotes crassus. Genes Dev. 1989; 3(5):585-97. DOI: 10.1101/gad.3.5.585. View

5.
Yao M, Choi J, Yokoyama S, Austerberry C, Yao C . DNA elimination in Tetrahymena: a developmental process involving extensive breakage and rejoining of DNA at defined sites. Cell. 1984; 36(2):433-40. DOI: 10.1016/0092-8674(84)90236-8. View