» Articles » PMID: 25483392

Indoor Bioaerosol Dynamics

Overview
Journal Indoor Air
Date 2014 Dec 9
PMID 25483392
Citations 57
Authors
Affiliations
Soon will be listed here.
Abstract

Inhaling indoor air is the primary means by which humans are exposed to bioaerosols. Considering bacteria, fungi, and viruses, this study reviews the dynamic processes that govern indoor concentrations and fates of biological particulate material. Bioaerosol behavior is strongly coupled to particle size; this study emphasizes the range 0.1-10 μm in aerodynamic diameter. The principle of material balance allows concentrations to be determined from knowledge of important source and removal processes. Sources reviewed here include outdoor air introduced by air exchange plus indoor emission from occupants, occupant activities, and moldy materials. Important mechanisms that remove bioaerosols from indoor air include air exchange, deposition onto indoor surfaces, and active filtration. The review summarizes knowledge about size-dependent particle deposition in different regions of the respiratory tract, techniques for measuring indoor bioaerosols, and evidence for diseases caused by airborne exposure to bioaerosols. Future research challenges and opportunities are highlighted.

Citing Articles

3D modelling and simulation of thermal effects and dispersion of particles carrying infectious respiratory agents in a railway transport coach.

Armand P, Tache J Sci Rep. 2025; 15(1):2202.

PMID: 39819890 PMC: 11739636. DOI: 10.1038/s41598-024-84411-2.


Lesser-Known Cyanotoxins: A Comprehensive Review of Their Health and Environmental Impacts.

Al Haffar M, Fajloun Z, Azar S, Sabatier J, Khattar Z Toxins (Basel). 2024; 16(12).

PMID: 39728809 PMC: 11680425. DOI: 10.3390/toxins16120551.


Not the Silver Bullet: Uncovering the Unexpected Limited Impacts of Silver-Containing Showerheads on the Drinking Water Microbiome.

Pitell S, Spencer-Williams I, Huffman D, Moncure P, Millstone J, Stout J ACS ES T Water. 2024; 4(12):5364-5376.

PMID: 39698548 PMC: 11650587. DOI: 10.1021/acsestwater.4c00492.


Indoor bioaerosols and asthma: Overview, implications, and mitigation strategies.

Dannemiller K, Conrad L, Haines S, Huang Y, Marr L, Siegel J J Allergy Clin Immunol. 2024; 155(3):714-725.

PMID: 39613110 PMC: 11875944. DOI: 10.1016/j.jaci.2024.11.027.


A review of transmission risk in built environments: sources, regulations, sampling, and detection.

Yao X, Shen F, Hao J, Huang L, Keng B Front Public Health. 2024; 12:1415157.

PMID: 39131570 PMC: 11309999. DOI: 10.3389/fpubh.2024.1415157.


References
1.
Beck J, Young V, Huffnagle G . The microbiome of the lung. Transl Res. 2012; 160(4):258-66. PMC: 3440512. DOI: 10.1016/j.trsl.2012.02.005. View

2.
Grice E, Segre J . The human microbiome: our second genome. Annu Rev Genomics Hum Genet. 2012; 13:151-70. PMC: 3518434. DOI: 10.1146/annurev-genom-090711-163814. View

3.
DUGUID J, WALLACE A . Air infection with dust liberated from clothing. Lancet. 1948; 2(6535):845-9. DOI: 10.1016/s0140-6736(48)91428-7. View

4.
Seo S, Reponen T, Levin L, Borchelt T, Grinshpun S . Aerosolization of particulate (1-->3)-beta-D-glucan from moldy materials. Appl Environ Microbiol. 2007; 74(3):585-93. PMC: 2227723. DOI: 10.1128/AEM.01791-07. View

5.
Nazaroff W . Indoor particle dynamics. Indoor Air. 2004; 14 Suppl 7:175-83. DOI: 10.1111/j.1600-0668.2004.00286.x. View