» Articles » PMID: 25466254

ThermoMouse: an in Vivo Model to Identify Modulators of UCP1 Expression in Brown Adipose Tissue

Overview
Journal Cell Rep
Publisher Cell Press
Date 2014 Dec 4
PMID 25466254
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

Obesity develops when energy intake chronically exceeds energy expenditure. Because brown adipose tissue (BAT) dissipates energy in the form of heat, increasing energy expenditure by augmenting BAT-mediated thermogenesis may represent an approach to counter obesity and its complications. The ability of BAT to dissipate energy is dependent on expression of mitochondrial uncoupling protein 1 (UCP1). To facilitate the identification of pharmacological modulators of BAT UCP1 levels, which may have potential as antiobesity medications, we developed a transgenic model in which luciferase activity faithfully mimics endogenous UCP1 expression and its response to physiologic stimuli. Phenotypic screening of a library using cells derived from this model yielded a small molecule that increases UCP1 expression in brown fat cells and mice. Upon adrenergic stimulation, compound-treated mice showed increased energy expenditure. These tools offer an opportunity to identify pharmacologic modulators of UCP1 expression and uncover regulatory pathways that impact BAT-mediated thermogenesis.

Citing Articles

Thermogenic Fat as a New Obesity Management Tool: From Pharmaceutical Reagents to Cell Therapies.

Cheng Y, Liang S, Zhang S, Hui X Biomedicines. 2024; 12(7).

PMID: 39062047 PMC: 11275133. DOI: 10.3390/biomedicines12071474.


Polyphenol Compound 18a Modulates UCP1-Dependent Thermogenesis to Counteract Obesity.

Wen X, Song Y, Zhang M, Kang Y, Chen D, Ma H Biomolecules. 2024; 14(6).

PMID: 38927022 PMC: 11201655. DOI: 10.3390/biom14060618.


Navigating the Adipocyte Precursor Niche: Cell-Cell Interactions, Regulatory Mechanisms and Implications for Adipose Tissue Homeostasis.

Kesharwani D, Brown A J Cell Signal. 2024; 5(2):65-86.

PMID: 38826152 PMC: 11141760. DOI: 10.33696/signaling.5.114.


A comparative assessment of reference genes in mouse brown adipocyte differentiation and thermogenesis in vitro.

Lai T, Hwang J, Ngo Q, Lee D, Kim H, Kim D Adipocyte. 2024; 13(1):2330355.

PMID: 38527945 PMC: 10965104. DOI: 10.1080/21623945.2024.2330355.


Brown adipose tissue CoQ deficiency activates the integrated stress response and FGF21-dependent mitohormesis.

Chang C, Gunawan A, Liparulo I, Zushin P, Vitangcol K, Timblin G EMBO J. 2024; 43(2):168-195.

PMID: 38212382 PMC: 10897314. DOI: 10.1038/s44318-023-00008-x.


References
1.
Sanchez-Gurmaches J, Guertin D . Adipocyte lineages: tracing back the origins of fat. Biochim Biophys Acta. 2013; 1842(3):340-51. PMC: 3805734. DOI: 10.1016/j.bbadis.2013.05.027. View

2.
Barbera M, Schluter A, Pedraza N, Iglesias R, Villarroya F, Giralt M . Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J Biol Chem. 2000; 276(2):1486-93. DOI: 10.1074/jbc.M006246200. View

3.
Long J, Svensson K, Tsai L, Zeng X, Roh H, Kong X . A smooth muscle-like origin for beige adipocytes. Cell Metab. 2014; 19(5):810-20. PMC: 4052772. DOI: 10.1016/j.cmet.2014.03.025. View

4.
Golozoubova V, Hohtola E, Matthias A, Jacobsson A, Cannon B, Nedergaard J . Only UCP1 can mediate adaptive nonshivering thermogenesis in the cold. FASEB J. 2001; 15(11):2048-50. DOI: 10.1096/fj.00-0536fje. View

5.
Boeuf S, Keijer J, Franssen-van Hal N, Klaus S . Individual variation of adipose gene expression and identification of covariated genes by cDNA microarrays. Physiol Genomics. 2002; 11(1):31-6. DOI: 10.1152/physiolgenomics.00051.2002. View