» Articles » PMID: 25419103

Manipulator Design and Operation for a Six-Degree-of-Freedom Handheld Tremor-Canceling Microsurgical Instrument

Overview
Date 2014 Nov 25
PMID 25419103
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

This paper presents the design and actuation of a six-degree-of-freedom (6-DOF) manipulator for a handheld instrument, known as "Micron," which performs active tremor compensation during microsurgery. The design incorporates a Gough-Stewart platform based on piezoelectric linear motor, with a specified minimum workspace of a cylinder 4 mm long and 4 mm in diameter at the end-effector. Given the stall force of the motors and the loading typically encountered in vitreoretinal microsurgery, the dimensions of the manipulator are optimized to tolerate a transverse load of 0.2 N on a remote center of motion near the midpoint of the tool shaft. The optimization yields a base diameter of 23 mm and a height of 37 mm. The fully handheld instrument includes a custom-built optical tracking system for control feedback, and an ergonomic housing to serve as a handle. The manipulation performance was investigated in both clamped and handheld conditions. In positioning experiments with varying side loads, the manipulator tolerates side load up to 0.25 N while tracking a sinusoidal target trajectory with less than 20 μm error. Physiological hand tremor is reduced by about 90% in a pointing task, and error less than 25 μm is achieved in handheld circle-tracing.

Citing Articles

A Feasible Workflow for Retinal Vein Cannulation in Ex Vivo Porcine Eyes with Robotic Assistance.

Zhang P, Gehlbach P, Kobilarov M, Iordachita I Annu Int Conf IEEE Eng Med Biol Soc. 2025; 2024:1-5.

PMID: 40039012 PMC: 11884663. DOI: 10.1109/EMBC53108.2024.10781906.


Robotics and optical coherence tomography: current works and future perspectives [Invited].

Ma G, McCloud M, Tian Y, Narawane A, Shi H, Trout R Biomed Opt Express. 2025; 16(2):578-602.

PMID: 39958851 PMC: 11828438. DOI: 10.1364/BOE.547943.


Evaluation of (Shared) Autonomy in Robot-Assisted Vitreoretinal Surgery Using a Surgical Model.

Marinho M, Koyama Y, Taniguchi Y, Yamanaka T, Arai F, Omata S Int J Med Robot. 2025; 21(1):e70040.

PMID: 39788756 PMC: 11717677. DOI: 10.1002/rcs.70040.


Design and Evaluation of an Eye Mountable AutoDALK Robot for Deep Anterior Lamellar Keratoplasty.

Opfermann J, Wang Y, Kaluna J, Suzuki K, Gensheimer W, Krieger A Micromachines (Basel). 2024; 15(6).

PMID: 38930758 PMC: 11205909. DOI: 10.3390/mi15060788.


Autonomous Needle Navigation in Subretinal Injections via iOCT.

Zhang P, Kim J, Gehlbach P, Iordachita I, Kobilarov M IEEE Robot Autom Lett. 2024; 9(5):4154-4161.

PMID: 38550718 PMC: 10972538. DOI: 10.1109/lra.2024.3375710.


References
1.
Lanfranco A, Castellanos A, Desai J, Meyers W . Robotic surgery: a current perspective. Ann Surg. 2003; 239(1):14-21. PMC: 1356187. DOI: 10.1097/01.sla.0000103020.19595.7d. View

2.
Yang S, MacLachlan R, Riviere C . Design and Analysis of 6 DOF Handheld Micromanipulator. IEEE Int Conf Robot Autom. 2014; 2012:1946-4729. PMC: 3955890. DOI: 10.1109/ICRA.2012.6225133. View

3.
Yang S, Cho J, Lee S, Park K, Kim J, Huh Y . Feedback controlled piezo-motor microdrive for accurate electrode positioning in chronic single unit recording in behaving mice. J Neurosci Methods. 2010; 195(2):117-27. DOI: 10.1016/j.jneumeth.2010.09.006. View

4.
Becker B, MacLachlan R, Lobes Jr L, Hager G, Riviere C . Vision-Based Control of a Handheld Surgical Micromanipulator with Virtual Fixtures. IEEE Trans Robot. 2014; 29(3):674-683. PMC: 3955368. DOI: 10.1109/TRO.2013.2239552. View

5.
Fee M, Leonardo A . Miniature motorized microdrive and commutator system for chronic neural recording in small animals. J Neurosci Methods. 2001; 112(2):83-94. DOI: 10.1016/s0165-0270(01)00426-5. View