Synthesis and Biological Evaluation of Novel Indole-2-one and 7-aza-2-oxindole Derivatives As Anti-inflammatory Agents
Overview
Authors
Affiliations
Sepsis, a typically acute inflammatory disease, is the biggest cause of death in ICU (intensive care unit). Novel anti-inflammatory alternatives are still in urgent need. In this study, we designed and synthesized 30 indole-2-one and 7-aza-2-oxindole derivatives based on the skeleton of tenidap, and their anti-inflammatory activity was determined by evaluating the inhibitory potency against lipopolysaccharide (LPS)-stimulated tumor necrosis factor (TNF)-α and interleukin (IL)-6 release in RAW264.7 macrophages. Quantitative SAR (structure-activity relationship) analysis revealed that a high molecular polarizability and low lipid/water partition coefficient (ALogP) in indole-2-one are beneficial for anti-inflammatory activity. Moreover, compounds 7i and 8e inhibited the expression of TNF-α, IL-6, COX-2, PGES, and iNOS in LPS-stimulated macrophages, and 7i exhibited a significant protection from LPS-induced septic death in mouse models. These data present a series of new indole-2-one compounds with potential therapeutic effects in acute inflammatory diseases.
Gao Z, Han H, Zhao Y, Yuan H, Zheng S, Zhang Y J Cancer Res Clin Oncol. 2021; 147(11):3195-3209.
PMID: 34291356 DOI: 10.1007/s00432-021-03718-z.