Boltz H, Kohler B, Ihle T
Entropy (Basel). 2025; 26(12.
PMID: 39766683
PMC: 11675265.
DOI: 10.3390/e26121054.
Kang C, Chen P, Yi X, Li D, Hu Y, Yang Y
Elife. 2024; 13.
PMID: 39671466
PMC: 11643633.
DOI: 10.7554/eLife.96821.
Zhao L, Gulati P, Caballero F, Kolvin I, Adkins R, Marchetti M
Proc Natl Acad Sci U S A. 2024; 121(51):e2410345121.
PMID: 39656205
PMC: 11665914.
DOI: 10.1073/pnas.2410345121.
Houston A, Mottram N
Commun Phys. 2024; 7(1):375.
PMID: 39574428
PMC: 11576538.
DOI: 10.1038/s42005-024-01864-7.
Velez-Ceron I, Guillamat P, Sagues F, Ignes-Mullol J
Proc Natl Acad Sci U S A. 2024; 121(11):e2312494121.
PMID: 38451942
PMC: 10945829.
DOI: 10.1073/pnas.2312494121.
[The Dynamic Model of the Active-Inactive Cell Interface].
Zhang D, Zhang H, Li B
Sichuan Da Xue Xue Bao Yi Xue Ban. 2024; 55(1):39-46.
PMID: 38322532
PMC: 10839493.
DOI: 10.12182/20240160508.
Machine learning topological defects in confluent tissues.
Killeen A, Bertrand T, Lee C
Biophys Rep (N Y). 2024; 4(1):100142.
PMID: 38313863
PMC: 10837480.
DOI: 10.1016/j.bpr.2024.100142.
Imaging actin organisation and dynamics in 3D.
Phillips T, Marcotti S, Cox S, Parsons M
J Cell Sci. 2024; 137(2).
PMID: 38236161
PMC: 10906668.
DOI: 10.1242/jcs.261389.
Physically informed data-driven modeling of active nematics.
Golden M, Grigoriev R, Nambisan J, Fernandez-Nieves A
Sci Adv. 2023; 9(27):eabq6120.
PMID: 37406118
PMC: 10321743.
DOI: 10.1126/sciadv.abq6120.
Molecular-scale substrate anisotropy, crowding and division drive collective behaviours in cell monolayers.
Luo Y, Gu M, Park M, Fang X, Kwon Y, Uruena J
J R Soc Interface. 2023; 20(204):20230160.
PMID: 37403487
PMC: 10320338.
DOI: 10.1098/rsif.2023.0160.
Crisscross multilayering of cell sheets.
Sarkar T, Yashunsky V, Brezin L, Blanch Mercader C, Aryaksama T, Lacroix M
PNAS Nexus. 2023; 2(3):pgad034.
PMID: 36938501
PMC: 10019763.
DOI: 10.1093/pnasnexus/pgad034.
Continuous generation of topological defects in a passively driven nematic liquid crystal.
Mur M, Kos Z, Ravnik M, Musevic I
Nat Commun. 2022; 13(1):6855.
PMID: 36369171
PMC: 9652398.
DOI: 10.1038/s41467-022-34384-5.
Mesoscopic simulations of active nematics.
Kozhukhov T, Shendruk T
Sci Adv. 2022; 8(34):eabo5788.
PMID: 36001669
PMC: 9401632.
DOI: 10.1126/sciadv.abo5788.
Theory of defect-mediated morphogenesis.
Hoffmann L, Carenza L, Eckert J, Giomi L
Sci Adv. 2022; 8(15):eabk2712.
PMID: 35427161
PMC: 9012457.
DOI: 10.1126/sciadv.abk2712.
Flow around topological defects in active nematic films.
Ronning J, Marchetti C, Bowick M, Angheluta L
Proc Math Phys Eng Sci. 2022; 478(2257):20210879.
PMID: 35153617
PMC: 8791053.
DOI: 10.1098/rspa.2021.0879.
Design of nematic liquid crystals to control microscale dynamics.
Lavrentovich O
Liq Cryst Rev. 2021; 8(2):59-129.
PMID: 34956738
PMC: 8698256.
DOI: 10.1080/21680396.2021.1919576.
Properties of twisted topological defects in 2D nematic liquid crystals.
Pearce D, Kruse K
Soft Matter. 2021; 17(31):7408-7417.
PMID: 34318862
PMC: 8356798.
DOI: 10.1039/d1sm00825k.
Machine learning active-nematic hydrodynamics.
Colen J, Han M, Zhang R, Redford S, Lemma L, Morgan L
Proc Natl Acad Sci U S A. 2021; 118(10).
PMID: 33653956
PMC: 7958379.
DOI: 10.1073/pnas.2016708118.
Investigating the nature of active forces in tissues reveals how contractile cells can form extensile monolayers.
Balasubramaniam L, Doostmohammadi A, Saw T, Sankara Narayana G, Mueller R, Dang T
Nat Mater. 2021; 20(8):1156-1166.
PMID: 33603188
PMC: 7611436.
DOI: 10.1038/s41563-021-00919-2.
Filamentous active matter: Band formation, bending, buckling, and defects.
Vliegenthart G, Ravichandran A, Ripoll M, Auth T, Gompper G
Sci Adv. 2020; 6(30):eaaw9975.
PMID: 32832652
PMC: 7439626.
DOI: 10.1126/sciadv.aaw9975.