Kared H, Tan C, Narang V, Tan S, Xian C, Wei A
Sci Rep. 2024; 14(1):30779.
PMID: 39730488
PMC: 11680708.
DOI: 10.1038/s41598-024-80971-5.
Petkov S, Herrera C, Else L, Lebina L, Opoka D, Seiphetlo T
Front Immunol. 2022; 13:1009978.
PMID: 36479111
PMC: 9720390.
DOI: 10.3389/fimmu.2022.1009978.
Luis C, Maduro A, Pereira P, Mendes J, Soares R, Ramalho R
Front Nutr. 2022; 9:958563.
PMID: 36159455
PMC: 9493043.
DOI: 10.3389/fnut.2022.958563.
Alrubayyi A, Moreno-Cubero E, Hameiri-Bowen D, Matthews R, Rowland-Jones S, Schurich A
Front Immunol. 2022; 13:908697.
PMID: 35865519
PMC: 9295450.
DOI: 10.3389/fimmu.2022.908697.
Toyoda K, Matsuoka M
Front Immunol. 2022; 13:875211.
PMID: 35572593
PMC: 9100821.
DOI: 10.3389/fimmu.2022.875211.
Transcriptomic landscape of skin lesions in cutaneous leishmaniasis reveals a strong CD8 T cell immunosenescence signature linked to immunopathology.
Fantecelle C, Polaco Covre L, Garcia de Moura R, de Matos Guedes H, Farias Amorim C, Scott P
Immunology. 2021; 164(4):754-765.
PMID: 34432883
PMC: 8561102.
DOI: 10.1111/imm.13410.
DNA Methylation Patterns in T Cells of Naïve and Influenza A Virus-Infected Mice Developmentally Exposed to an Aryl Hydrocarbon Receptor Ligand.
Burke C, Myers J, Post C, Boule L, Lawrence B
Environ Health Perspect. 2021; 129(1):17007.
PMID: 33449811
PMC: 7810290.
DOI: 10.1289/EHP7699.
Exhausted-like CD8+ T cell phenotypes linked to C-peptide preservation in alefacept-treated T1D subjects.
Diggins K, Serti E, Muir V, Rosasco M, Lu T, Balmas E
JCI Insight. 2020; 6(3).
PMID: 33351781
PMC: 7934874.
DOI: 10.1172/jci.insight.142680.
Telomeric injury by KML001 in human T cells induces mitochondrial dysfunction through the p53-PGC-1α pathway.
Schank M, Zhao J, Wang L, Li Z, Cao D, Nguyen L
Cell Death Dis. 2020; 11(12):1030.
PMID: 33268822
PMC: 7710715.
DOI: 10.1038/s41419-020-03238-7.
T cell metabolism in chronic viral infection.
Pallett L, Schmidt N, Schurich A
Clin Exp Immunol. 2019; 197(2):143-152.
PMID: 31038727
PMC: 6642876.
DOI: 10.1111/cei.13308.
T-Cell Exhaustion in Chronic Infections: Reversing the State of Exhaustion and Reinvigorating Optimal Protective Immune Responses.
Saeidi A, Zandi K, Cheok Y, Saeidi H, Wong W, Lee C
Front Immunol. 2018; 9:2569.
PMID: 30473697
PMC: 6237934.
DOI: 10.3389/fimmu.2018.02569.
Sugar or Fat?-Metabolic Requirements for Immunity to Viral Infections.
Shehata H, Murphy A, Lee M, Gardiner C, Crowe S, Sanjabi S
Front Immunol. 2017; 8:1311.
PMID: 29085369
PMC: 5649203.
DOI: 10.3389/fimmu.2017.01311.
Subset- and Antigen-Specific Effects of Treg on CD8+ T Cell Responses in Chronic HIV Infection.
Nikolova M, Wiedemann A, Muhtarova M, Achkova D, Lacabaratz C, Levy Y
PLoS Pathog. 2016; 12(11):e1005995.
PMID: 27829019
PMC: 5102588.
DOI: 10.1371/journal.ppat.1005995.
Distinct Metabolic Requirements of Exhausted and Functional Virus-Specific CD8 T Cells in the Same Host.
Schurich A, Pallett L, Jajbhay D, Wijngaarden J, Otano I, Gill U
Cell Rep. 2016; 16(5):1243-1252.
PMID: 27452473
PMC: 4977274.
DOI: 10.1016/j.celrep.2016.06.078.
Innate and Adaptive Immune Regulation During Chronic Viral Infections.
Zuniga E, Macal M, Lewis G, Harker J
Annu Rev Virol. 2016; 2(1):573-97.
PMID: 26958929
PMC: 4785831.
DOI: 10.1146/annurev-virology-100114-055226.
Editorial: The Metabolic Challenges of Immune Cells in Health and Disease.
Frezza C, Mauro C
Front Immunol. 2015; 6:293.
PMID: 26089825
PMC: 4455239.
DOI: 10.3389/fimmu.2015.00293.