» Articles » PMID: 25295002

SIMA: Python Software for Analysis of Dynamic Fluorescence Imaging Data

Overview
Specialty Neurology
Date 2014 Oct 9
PMID 25295002
Citations 117
Authors
Affiliations
Soon will be listed here.
Abstract

Fluorescence imaging is a powerful method for monitoring dynamic signals in the nervous system. However, analysis of dynamic fluorescence imaging data remains burdensome, in part due to the shortage of available software tools. To address this need, we have developed SIMA, an open source Python package that facilitates common analysis tasks related to fluorescence imaging. Functionality of this package includes correction of motion artifacts occurring during in vivo imaging with laser-scanning microscopy, segmentation of imaged fields into regions of interest (ROIs), and extraction of signals from the segmented ROIs. We have also developed a graphical user interface (GUI) for manual editing of the automatically segmented ROIs and automated registration of ROIs across multiple imaging datasets. This software has been designed with flexibility in mind to allow for future extension with different analysis methods and potential integration with other packages. Software, documentation, and source code for the SIMA package and ROI Buddy GUI are freely available at http://www.losonczylab.org/sima/.

Citing Articles

An of Things approach for adaptable control of behavioral and navigation-based experiments.

Bowler J, Zakka G, Yong H, Li W, Rao B, Liao Z Elife. 2025; 13.

PMID: 40008867 PMC: 11867614. DOI: 10.7554/eLife.97433.


Sub-cellular population imaging tools reveal stable apical dendrites in hippocampal area CA3.

Moore J, Rashid S, Bicker E, Johnson C, Codrington N, Chklovskii D Nat Commun. 2025; 16(1):1119.

PMID: 39875374 PMC: 11775317. DOI: 10.1038/s41467-025-56289-9.


Synaptic basis of feature selectivity in hippocampal neurons.

Gonzalez K, Negrean A, Liao Z, Terada S, Zhang G, Lee S Nature. 2024; 637(8048):1152-1160.

PMID: 39695232 DOI: 10.1038/s41586-024-08325-9.


A preprocessing toolbox for 2-photon subcellular calcium imaging.

Jiang A, Zhao C, Sheffield M bioRxiv. 2024; .

PMID: 39605689 PMC: 11601315. DOI: 10.1101/2024.10.04.616737.


Recurrent Connectivity Shapes Spatial Coding in Hippocampal CA3 Subregions.

Kong E, Zabeh E, Liao Z, Mihaila T, Wilson C, Santhirasegaran C bioRxiv. 2024; .

PMID: 39574766 PMC: 11581023. DOI: 10.1101/2024.11.07.622379.


References
1.
Dombeck D, Khabbaz A, Collman F, Adelman T, Tank D . Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron. 2007; 56(1):43-57. PMC: 2268027. DOI: 10.1016/j.neuron.2007.08.003. View

2.
Kerr J, Denk W . Imaging in vivo: watching the brain in action. Nat Rev Neurosci. 2008; 9(3):195-205. DOI: 10.1038/nrn2338. View

3.
Mukamel E, Nimmerjahn A, Schnitzer M . Automated analysis of cellular signals from large-scale calcium imaging data. Neuron. 2009; 63(6):747-60. PMC: 3282191. DOI: 10.1016/j.neuron.2009.08.009. View

4.
Campagnola L, Kratz M, Manis P . ACQ4: an open-source software platform for data acquisition and analysis in neurophysiology research. Front Neuroinform. 2014; 8:3. PMC: 3906568. DOI: 10.3389/fninf.2014.00003. View

5.
van der Walt S, Schonberger J, Nunez-Iglesias J, Boulogne F, Warner J, Yager N . scikit-image: image processing in Python. PeerJ. 2014; 2:e453. PMC: 4081273. DOI: 10.7717/peerj.453. View