» Articles » PMID: 25232683

Structural Analyses of Ca²⁺/CaM Interaction with NaV Channel C-termini Reveal Mechanisms of Calcium-dependent Regulation

Overview
Journal Nat Commun
Specialty Biology
Date 2014 Sep 19
PMID 25232683
Citations 65
Authors
Affiliations
Soon will be listed here.
Abstract

Ca(2+) regulates voltage-gated Na(+) (NaV) channels, and perturbed Ca(2+) regulation of NaV function is associated with epilepsy syndromes, autism and cardiac arrhythmias. Understanding the disease mechanisms, however, has been hindered by a lack of structural information and competing models for how Ca(2+) affects NaV channel function. Here we report the crystal structures of two ternary complexes of a human NaV cytosolic C-terminal domain (CTD), a fibroblast growth factor homologous factor and Ca(2+)/calmodulin (Ca(2+)/CaM). These structures rule out direct binding of Ca(2+) to the NaV CTD and uncover new contacts between CaM and the NaV CTD. Probing these new contacts with biochemical and functional experiments allows us to propose a mechanism by which Ca(2+) could regulate NaV channels. Further, our model provides hints towards understanding the molecular basis of the neurologic disorders and cardiac arrhythmias caused by NaV channel mutations.

Citing Articles

Differential Regulation of Nav1.1 and SCN1A Disease Mutant Sodium Current Properties by Fibroblast Growth Factor Homologous Factors.

Frazee A, Zybura A, Cummins T Cells. 2025; 14(4).

PMID: 39996763 PMC: 11853998. DOI: 10.3390/cells14040291.


An all-atom model of the human cardiac sodium channel in a lipid bilayer.

Knotts G, Lile S, Campbell E, Agee T, Liyanage S, Gwaltney S Sci Rep. 2024; 14(1):26857.

PMID: 39500978 PMC: 11538489. DOI: 10.1038/s41598-024-78466-4.


Calmodulin mutations affecting Gly114 impair binding to the Na1.5 IQ-domain.

Brohus M, Busuioc A, Wimmer R, Nyegaard M, Overgaard M Front Pharmacol. 2023; 14:1210140.

PMID: 37663247 PMC: 10469309. DOI: 10.3389/fphar.2023.1210140.


Biallelic structural variations within detected by long-read sequencing in epilepsy.

Ohori S, Miyauchi A, Osaka H, Lourenco C, Arakaki N, Sengoku T Life Sci Alliance. 2023; 6(8).

PMID: 37286232 PMC: 10248215. DOI: 10.26508/lsa.202302025.


Feedback contributions to excitation-contraction coupling in native functioning striated muscle.

Salvage S, Dulhunty A, Jeevaratnam K, Jackson A, Huang C Philos Trans R Soc Lond B Biol Sci. 2023; 378(1879):20220162.

PMID: 37122213 PMC: 10150225. DOI: 10.1098/rstb.2022.0162.


References
1.
ORoak B, Vives L, Girirajan S, Karakoc E, Krumm N, Coe B . Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012; 485(7397):246-50. PMC: 3350576. DOI: 10.1038/nature10989. View

2.
Wang Q, Bardgett M, Wong M, Wozniak D, Lou J, McNeil B . Ataxia and paroxysmal dyskinesia in mice lacking axonally transported FGF14. Neuron. 2002; 35(1):25-38. DOI: 10.1016/s0896-6273(02)00744-4. View

3.
Lossin C . A catalog of SCN1A variants. Brain Dev. 2008; 31(2):114-30. DOI: 10.1016/j.braindev.2008.07.011. View

4.
Pitt G . Calmodulin and CaMKII as molecular switches for cardiac ion channels. Cardiovasc Res. 2006; 73(4):641-7. DOI: 10.1016/j.cardiores.2006.10.019. View

5.
Willsey A, Sanders S, Li M, Dong S, Tebbenkamp A, Muhle R . Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell. 2013; 155(5):997-1007. PMC: 3995413. DOI: 10.1016/j.cell.2013.10.020. View