» Articles » PMID: 25209147

High-efficiency Genome Editing and Allele Replacement in Prototrophic and Wild Strains of Saccharomyces

Overview
Journal Genetics
Specialty Genetics
Date 2014 Sep 12
PMID 25209147
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Current genome editing techniques available for Saccharomyces yeast species rely on auxotrophic markers, limiting their use in wild and industrial strains and species. Taking advantage of the ancient loss of thymidine kinase in the fungal kingdom, we have developed the herpes simplex virus thymidine kinase gene as a selectable and counterselectable marker that forms the core of novel genome engineering tools called the H: aploid E: ngineering and R: eplacement P: rotocol (HERP) cassettes. Here we show that these cassettes allow a researcher to rapidly generate heterogeneous populations of cells with thousands of independent chromosomal allele replacements using mixed PCR products. We further show that the high efficiency of this approach enables the simultaneous replacement of both alleles in diploid cells. Using these new techniques, many of the most powerful yeast genetic manipulation strategies are now available in wild, industrial, and other prototrophic strains from across the diverse Saccharomyces genus.

Citing Articles

Epistasis and cryptic QTL identified using modified bulk segregant analysis of copper resistance in budding yeast.

Buzby C, Plavskin Y, Sartori F, Tong Q, Vail J, Siegal M bioRxiv. 2024; .

PMID: 39605464 PMC: 11601411. DOI: 10.1101/2024.10.28.620582.


Spontaneous single-nucleotide substitutions and microsatellite mutations have distinct distributions of fitness effects.

Plavskin Y, Stella de Biase M, Ziv N, Janska L, Zhu Y, Hall D PLoS Biol. 2024; 22(7):e3002698.

PMID: 38950062 PMC: 11244821. DOI: 10.1371/journal.pbio.3002698.


Engineering transcriptional regulation of pentose metabolism in Rhodosporidium toruloides for improved conversion of xylose to bioproducts.

Coradetti S, Adamczyk P, Liu D, Gao Y, Otoupal P, Geiselman G Microb Cell Fact. 2023; 22(1):144.

PMID: 37537586 PMC: 10398944. DOI: 10.1186/s12934-023-02148-5.


The rate of spontaneous mutations in yeast deficient for MutSβ function.

Plavskin Y, Stella de Biase M, Schwarz R, Siegal M G3 (Bethesda). 2022; 13(3).

PMID: 36529906 PMC: 9997558. DOI: 10.1093/g3journal/jkac330.


Engineering of Synthetic Transcriptional Switches in Yeast.

Tominaga M, Kondo A, Ishii J Life (Basel). 2022; 12(4).

PMID: 35455048 PMC: 9030632. DOI: 10.3390/life12040557.


References
1.
Hittinger C, Carroll S . Gene duplication and the adaptive evolution of a classic genetic switch. Nature. 2007; 449(7163):677-81. DOI: 10.1038/nature06151. View

2.
Hwang W, Fu Y, Reyon D, Maeder M, Tsai S, Sander J . Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. 2013; 31(3):227-9. PMC: 3686313. DOI: 10.1038/nbt.2501. View

3.
Gratz S, Cummings A, Nguyen J, Hamm D, Donohue L, Harrison M . Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics. 2013; 194(4):1029-35. PMC: 3730909. DOI: 10.1534/genetics.113.152710. View

4.
Hittinger C . Saccharomyces diversity and evolution: a budding model genus. Trends Genet. 2013; 29(5):309-17. DOI: 10.1016/j.tig.2013.01.002. View

5.
Gao Y, Zhao Y . Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol. 2013; 56(4):343-9. DOI: 10.1111/jipb.12152. View