» Articles » PMID: 25173831

Single-molecule Nucleic Acid Interactions Monitored on a Label-free Microcavity Biosensor Platform

Overview
Journal Nat Nanotechnol
Specialty Biotechnology
Date 2014 Sep 1
PMID 25173831
Citations 104
Authors
Affiliations
Soon will be listed here.
Abstract

Biosensing relies on the detection of molecules and their specific interactions. It is therefore highly desirable to develop transducers exhibiting ultimate detection limits. Microcavities are an exemplary candidate technology for demonstrating such a capability in the optical domain and in a label-free fashion. Additional sensitivity gains, achievable by exploiting plasmon resonances, promise biosensing down to the single-molecule level. Here, we introduce a biosensing platform using optical microcavity-based sensors that exhibits single-molecule sensitivity and is selective to specific single binding events. Whispering gallery modes in glass microspheres are used to leverage plasmonic enhancements in gold nanorods for the specific detection of nucleic acid hybridization, down to single 8-mer oligonucleotides. Detection of single intercalating small molecules confirms the observation of single-molecule hybridization. Matched and mismatched strands are discriminated by their interaction kinetics. Our platform allows us to monitor specific molecular interactions transiently, hence mitigating the need for high binding affinity and avoiding permanent binding of target molecules to the receptors. Sensor lifetime is therefore increased, allowing interaction kinetics to be statistically analysed.

Citing Articles

Label-free (fluorescence-free) sensing of a single DNA molecule on DNA origami using a plasmon-enhanced WGM sensor.

Ghamari S, Chiarelli G, Kolataj K, Subramanian S, Acuna G, Vollmer F Nanophotonics. 2025; 14(2):253-262.

PMID: 39927203 PMC: 11806501. DOI: 10.1515/nanoph-2024-0560.


Detection and Digital Resolution Counting of Nanoparticles with Optical Resonators and Applications in Biosensing.

Aguirre M, Long K, Li N, Manoto S, Cunningham B Chemosensors (Basel). 2024; 6(2).

PMID: 39559408 PMC: 11573240. DOI: 10.3390/chemosensors6020013.


Surpassing the Diffraction Limit in Label-Free Optical Microscopy.

Palounek D, Vala M, Bujak L, Kopal I, Jirikova K, Shaidiuk Y ACS Photonics. 2024; 11(10):3907-3921.

PMID: 39429866 PMC: 11487630. DOI: 10.1021/acsphotonics.4c00745.


High-Q WGM microcavity-based optofluidic sensor technologies for biological analysis.

Wang Z, Zhou B, Zhang A Biomicrofluidics. 2024; 18(4):041502.

PMID: 39219592 PMC: 11364460. DOI: 10.1063/5.0200166.


Label-free, real-time monitoring of membrane binding events at zeptomolar concentrations using frequency-locked optical microresonators.

Gin A, Nguyen P, Melzer J, Li C, Strzelinski H, Liggett S Nat Commun. 2024; 15(1):7445.

PMID: 39198447 PMC: 11358326. DOI: 10.1038/s41467-024-51320-x.


References
1.
Walker D, Leitsch E, Nap R, Szleifer I, Grzybowski B . Geometric curvature controls the chemical patchiness and self-assembly of nanoparticles. Nat Nanotechnol. 2013; 8(9):676-81. DOI: 10.1038/nnano.2013.158. View

2.
Arnold S, Ramjit R, Keng D, Kolchenko V, Teraoka I . MicroParticle photophysics illuminates viral bio-sensing. Faraday Discuss. 2008; 137:65-83. DOI: 10.1039/b702920a. View

3.
Zijlstra P, Paulo P, Orrit M . Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat Nanotechnol. 2012; 7(6):379-82. DOI: 10.1038/nnano.2012.51. View

4.
Cooper M . Optical biosensors in drug discovery. Nat Rev Drug Discov. 2002; 1(7):515-28. DOI: 10.1038/nrd838. View

5.
Foreman M, Jin W, Vollmer F . Optimizing detection limits in whispering gallery mode biosensing. Opt Express. 2014; 22(5):5491-511. DOI: 10.1364/OE.22.005491. View