» Articles » PMID: 2515293

Phylogeny of Nitrogenase Sequences in Frankia and Other Nitrogen-fixing Microorganisms

Overview
Journal J Mol Evol
Specialty Biochemistry
Date 1989 Nov 1
PMID 2515293
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

The complete nucleotide sequence of a nitrogenase (nifH) gene was determined from a second strain (HRN18a) of Frankia, an aerobic soil bacterium. The open reading frame is 870 bp long and encodes a polypeptide of 290 amino acids. The amino acid and nucleotide sequences were compared with 21 other published sequences. The two Frankia strains were 96% similar at the amino acid level and 93% similar at the nucleotide level. A number of methods were used to infer phylogenies of these nitrogen fixers, based on nifH amino acid and nucleotide sequences. The results obtained do not agree completely with other phylogenies for these bacteria and thus make probable occurrences of lateral transfer of the nif genes. The time of divergence of the two Frankia strains could be estimated at about 100 million years. The vanadium-dependent (Type 2) nitrogenase present in Azotobacter spp. appears to be a recent derivation from the conventional molybdenum-dependent (Type 1) enzyme, whereas the iron-dependent (Type 3) alternative nitrogenase would have a much older origin.

Citing Articles

gen. nov., sp. nov., a bacterium isolated from oil sludge, and proposal of fam. nov.

Peng C, Zhang X, Li J, Yang M, Ma S, Fan H Int J Syst Evol Microbiol. 2024; 74(3).

PMID: 38512751 PMC: 10963914. DOI: 10.1099/ijsem.0.006292.


Inter-cluster competition and resource partitioning may govern the ecology of Frankia.

Sarkar I, Sen G, Bhattacharyya S, Gtari M, Sen A Arch Microbiol. 2022; 204(6):326.

PMID: 35576077 DOI: 10.1007/s00203-022-02910-0.


Parameters influencing the development of highly conductive and efficient biofilm during microbial electrosynthesis: the importance of applied potential and inorganic carbon source.

Izadi P, Fontmorin J, Godain A, Yu E, Head I NPJ Biofilms Microbiomes. 2020; 6(1):40.

PMID: 33056998 PMC: 7560852. DOI: 10.1038/s41522-020-00151-x.


Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions.

Esteves-Ferreira A, Cavalcanti J, Vaz M, Alvarenga L, Nunes-Nesi A, Araujo W Genet Mol Biol. 2017; 40(1 suppl 1):261-275.

PMID: 28323299 PMC: 5452144. DOI: 10.1590/1678-4685-GMB-2016-0050.


Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes.

Xie J, Du Z, Bai L, Tian C, Zhang Y, Xie J PLoS Genet. 2014; 10(3):e1004231.

PMID: 24651173 PMC: 3961195. DOI: 10.1371/journal.pgen.1004231.


References
1.
FITCH W, MARGOLIASH E . Construction of phylogenetic trees. Science. 1967; 155(3760):279-84. DOI: 10.1126/science.155.3760.279. View

2.
Fox G, Stackebrandt E, Hespell R, Gibson J, Maniloff J, Dyer T . The phylogeny of prokaryotes. Science. 1980; 209(4455):457-63. DOI: 10.1126/science.6771870. View

3.
Fuhrmann M, Hennecke H . Rhizobium japonicum nitrogenase Fe protein gene (nifH). J Bacteriol. 1984; 158(3):1005-11. PMC: 215542. DOI: 10.1128/jb.158.3.1005-1011.1984. View

4.
Scott K, Rolfe B, Shine J . Nitrogenase structural genes are unlinked in the nonlegume symbiont Parasponia rhizobium. DNA. 1983; 2(2):141-8. DOI: 10.1089/dna.1983.2.141. View

5.
Mevarech M, Rice D, Haselkorn R . Nucleotide sequence of a cyanobacterial nifH gene coding for nitrogenase reductase. Proc Natl Acad Sci U S A. 1980; 77(11):6476-80. PMC: 350308. DOI: 10.1073/pnas.77.11.6476. View