» Articles » PMID: 25148905

Microarray Analysis of the Transcriptional Responses of Porphyromonas Gingivalis to Polyphosphate

Overview
Journal BMC Microbiol
Publisher Biomed Central
Specialty Microbiology
Date 2014 Aug 24
PMID 25148905
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Polyphosphate (polyP) has bactericidal activity against a gram-negative periodontopathogen Porphyromonas gingivalis, a black-pigmented gram-negative anaerobic rod. However, current knowledge about the mode of action of polyP against P. gingivalis is incomplete. To elucidate the mechanisms of antibacterial action of polyP against P. gingivalis, we performed the full-genome gene expression microarrays, and gene ontology (GO) and protein-protein interaction network analysis of differentially expressed genes (DEGs).

Results: We successfully identified 349 up-regulated genes and 357 down-regulated genes (>1.5-fold, P < 0.05) in P. gingivalis W83 treated with polyP75 (sodium polyphosphate, Na(n+2)P(n)O3(n+1); n = 75). Real-time PCR confirmed the up- and down-regulation of some selected genes. GO analysis of the DEGs identified distinct biological themes. Using 202 DEGs belonging to the biological themes, we generated the protein-protein interaction network based on a database of known and predicted protein interactions. The network analysis identified biological meaningful clusters related to hemin acquisition, energy metabolism, cell envelope and cell division, ribosomal proteins, and transposon function.

Conclusions: polyP probably exerts its antibacterial effect through inhibition of hemin acquisition by the bacterium, resulting in severe perturbation of energy metabolism, cell envelope biosynthesis and cell division, and elevated transposition. Further studies will be needed to elucidate the exact mechanism by which polyP induces up-regulation of the genes related to ribosomal proteins. Our results will shed new light on the study of the antibacterial mechanism of polyP against other related bacteria belonging to the black-pigmented Bacteroides species.

Citing Articles

Contribution of -Omics Technologies in the Study of during Periodontitis Pathogenesis: A Minireview.

Nunez-Belmar J, Morales-Olavarria M, Vicencio E, Vernal R, Cardenas J, Cortez C Int J Mol Sci. 2023; 24(1).

PMID: 36614064 PMC: 9820714. DOI: 10.3390/ijms24010620.


Transcriptomic Profile Analysis of Response to Flower Extracts.

Ghafar S, Salehuddin N, Abdul Rahman N, Halib N, Hanafiah R Evid Based Complement Alternat Med. 2022; 2022:7767940.

PMID: 35774750 PMC: 9239782. DOI: 10.1155/2022/7767940.


Model systems for studying polyphosphate biology: a focus on microorganisms.

Denoncourt A, Downey M Curr Genet. 2021; 67(3):331-346.

PMID: 33420907 DOI: 10.1007/s00294-020-01148-x.


Porphyromonas gingivalis adopts intricate and unique molecular mechanisms to survive and persist within the host: a critical update.

Chopra A, Bhat S, Sivaraman K J Oral Microbiol. 2020; 12(1):1801090.

PMID: 32944155 PMC: 7482874. DOI: 10.1080/20002297.2020.1801090.


Gene expression of Porphyromonas gingivalis ATCC 33277 when growing in an in vitro multispecies biofilm.

Romero-Lastra P, Sanchez M, Llama-Palacios A, Figuero E, Herrera D, Sanz M PLoS One. 2019; 14(8):e0221234.

PMID: 31437202 PMC: 6706054. DOI: 10.1371/journal.pone.0221234.


References
1.
Lewis J, Plata K, Yu F, Rosato A, Anaya C . Transcriptional organization, regulation and role of the Porphyromonas gingivalis W83 hmu haemin-uptake locus. Microbiology (Reading). 2006; 152(Pt 11):3367-3382. DOI: 10.1099/mic.0.29011-0. View

2.
Maier S, Scherer S, Loessner M . Long-chain polyphosphate causes cell lysis and inhibits Bacillus cereus septum formation, which is dependent on divalent cations. Appl Environ Microbiol. 1999; 65(9):3942-9. PMC: 99724. DOI: 10.1128/AEM.65.9.3942-3949.1999. View

3.
Palzkill T . Impending doom: antibiotic exposure and bacterial gene expression. Genome Res. 2001; 11(1):1-2. DOI: 10.1101/gr.11.1.1. View

4.
Shibata H, Morioka T . Antibacterial action of condensed phosphates on the bacterium Streptococcus mutans and experimental caries in the hamster. Arch Oral Biol. 1982; 27(10):809-16. DOI: 10.1016/0003-9969(82)90034-6. View

5.
Yates J, Arfsten A, Nomura M . In vitro expression of Escherichia coli ribosomal protein genes: autogenous inhibition of translation. Proc Natl Acad Sci U S A. 1980; 77(4):1837-41. PMC: 348603. DOI: 10.1073/pnas.77.4.1837. View