» Articles » PMID: 25060838

Enzymatic Synthesis Using Glycoside Phosphorylases

Overview
Journal Carbohydr Res
Publisher Elsevier
Date 2014 Jul 26
PMID 25060838
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Carbohydrate phosphorylases are readily accessible but under-explored catalysts for glycoside synthesis. Their use of accessible and relatively stable sugar phosphates as donor substrates underlies their potential. A wide range of these enzymes has been reported of late, displaying a range of preferences for sugar donors, acceptors and glycosidic linkages. This has allowed this class of enzymes to be used in the synthesis of diverse carbohydrate structures, including at the industrial scale. As more phosphorylase enzymes are discovered, access to further difficult to synthesise glycosides will be enabled. Herein we review reported phosphorylase enzymes and the glycoside products that they have been used to synthesise.

Citing Articles

Glycoside Phosphorylase Catalyzed Cellulose and β-1,3-Glucan Synthesis Using Chromophoric Glycosyl Acceptors.

Pylkkanen R, Maaheimo H, Liljestrom V, Mohammadi P, Penttila M Biomacromolecules. 2024; 25(8):5048-5057.

PMID: 39025475 PMC: 11322998. DOI: 10.1021/acs.biomac.4c00455.


Carbohydrate-active enzyme (CAZyme) discovery and engineering (Ultra)high-throughput screening.

Wardman J, Withers S RSC Chem Biol. 2024; 5(7):595-616.

PMID: 38966674 PMC: 11221537. DOI: 10.1039/d4cb00024b.


Effect of Free Cysteine Residues to Serine Mutation on Cellodextrin Phosphorylase.

Kuga T, Sunagawa N, Igarashi K J Appl Glycosci (1999). 2024; 71(2):37-46.

PMID: 38863949 PMC: 11163329. DOI: 10.5458/jag.jag.JAG-2023_0011.


Evolution of Phosphorylase Activity in an Ancestral Glycosyltransferase.

Franceus J, Rivas-Fernandez J, Lormans J, Rovira C, Desmet T ACS Catal. 2024; 14(5):3103-3114.

PMID: 38449530 PMC: 10913872. DOI: 10.1021/acscatal.3c05819.


Chemoenzymatic Syntheses of Fluorine-18-Labeled Disaccharides from [F] FDG Yield Potent Sensors of Living Bacteria .

Sorlin A, Lopez-Alvarez M, Rabbitt S, Alanizi A, Shuere R, Bobba K J Am Chem Soc. 2023; 145(32):17632-17642.

PMID: 37535945 PMC: 10436271. DOI: 10.1021/jacs.3c03338.


References
1.
Nihira T, Nakai H, Kitaoka M . 3-O-α-D-glucopyranosyl-L-rhamnose phosphorylase from Clostridium phytofermentans. Carbohydr Res. 2012; 350:94-7. DOI: 10.1016/j.carres.2011.12.019. View

2.
Hendry S, Boddy L, Lonsdale D . Interactions between callus cultures of European beech, indigenous ascomycetes and derived fungal extracts. New Phytol. 2021; 123(3):421-428. DOI: 10.1111/j.1469-8137.1993.tb03753.x. View

3.
Hidaka M, Fushinobu S, Honda Y, Wakagi T, Shoun H, Kitaoka M . Structural explanation for the acquisition of glycosynthase activity. J Biochem. 2009; 147(2):237-44. DOI: 10.1093/jb/mvp159. View

4.
Senoura T, Ito S, Taguchi H, Higa M, Hamada S, Matsui H . New microbial mannan catabolic pathway that involves a novel mannosylglucose phosphorylase. Biochem Biophys Res Commun. 2011; 408(4):701-6. DOI: 10.1016/j.bbrc.2011.04.095. View

5.
Andersson U, Radstrom P . Beta-glucose 1-phosphate-interconverting enzymes in maltose- and trehalose-fermenting lactic acid bacteria. Environ Microbiol. 2002; 4(2):81-8. DOI: 10.1046/j.1462-2920.2002.00268.x. View