» Articles » PMID: 25024436

A Virus Capsid-like Nanocompartment That Stores Iron and Protects Bacteria from Oxidative Stress

Overview
Journal EMBO J
Date 2014 Jul 16
PMID 25024436
Citations 88
Authors
Affiliations
Soon will be listed here.
Abstract

Living cells compartmentalize materials and enzymatic reactions to increase metabolic efficiency. While eukaryotes use membrane-bound organelles, bacteria and archaea rely primarily on protein-bound nanocompartments. Encapsulins constitute a class of nanocompartments widespread in bacteria and archaea whose functions have hitherto been unclear. Here, we characterize the encapsulin nanocompartment from Myxococcus xanthus, which consists of a shell protein (EncA, 32.5 kDa) and three internal proteins (EncB, 17 kDa; EncC, 13 kDa; EncD, 11 kDa). Using cryo-electron microscopy, we determined that EncA self-assembles into an icosahedral shell 32 nm in diameter (26 nm internal diameter), built from 180 subunits with the fold first observed in bacteriophage HK97 capsid. The internal proteins, of which EncB and EncC have ferritin-like domains, attach to its inner surface. Native nanocompartments have dense iron-rich cores. Functionally, they resemble ferritins, cage-like iron storage proteins, but with a massively greater capacity (~30,000 iron atoms versus ~3,000 in ferritin). Physiological data reveal that few nanocompartments are assembled during vegetative growth, but they increase fivefold upon starvation, protecting cells from oxidative stress through iron sequestration.

Citing Articles

Surface Engineering of the Encapsulin Nanocompartment of for Cell-Targeted Protein Delivery.

Gomez-Barrera S, Delgado-Tapia W, Hernandez-Gutierrez A, Cayetano-Cruz M, Mendez C, Bustos-Jaimes I ACS Omega. 2025; 10(7):7142-7152.

PMID: 40028083 PMC: 11866011. DOI: 10.1021/acsomega.4c10285.


In situ and in vitro cryo-EM reveal structures of mycobacterial encapsulin assembly intermediates.

Berger C, Lewis C, Gao Y, Knoops K, Lopez-Iglesias C, Peters P Commun Biol. 2025; 8(1):245.

PMID: 39955411 PMC: 11830004. DOI: 10.1038/s42003-025-07660-5.


Structural Characterization of Encapsulin in Complex with Dye-Decolorizing Peroxide.

Cuthbert B, Chen X, Burley K, Batot G, Contreras H, Dixon S Microorganisms. 2025; 12(12.

PMID: 39770668 PMC: 11676171. DOI: 10.3390/microorganisms12122465.


The structural and functional analysis of mycobacteria cysteine desulfurase-loaded encapsulin.

Tang Y, Liu Y, Zhang M, Lan W, Ma M, Chen C Commun Biol. 2024; 7(1):1656.

PMID: 39702509 PMC: 11659603. DOI: 10.1038/s42003-024-07299-8.


The biosynthesis of the odorant 2-methylisoborneol is compartmentalized inside a protein shell.

Andreas M, Giessen T Nat Commun. 2024; 15(1):9715.

PMID: 39521781 PMC: 11550324. DOI: 10.1038/s41467-024-54175-4.


References
1.
Scheres S, Chen S . Prevention of overfitting in cryo-EM structure determination. Nat Methods. 2012; 9(9):853-4. PMC: 4912033. DOI: 10.1038/nmeth.2115. View

2.
Lee H, DeLoache W, Dueber J . Spatial organization of enzymes for metabolic engineering. Metab Eng. 2011; 14(3):242-51. DOI: 10.1016/j.ymben.2011.09.003. View

3.
Belnap D, Olson N, Baker T . A method for establishing the handedness of biological macromolecules. J Struct Biol. 1997; 120(1):44-51. DOI: 10.1006/jsbi.1997.3896. View

4.
Sutter M, Boehringer D, Gutmann S, Gunther S, Prangishvili D, Loessner M . Structural basis of enzyme encapsulation into a bacterial nanocompartment. Nat Struct Mol Biol. 2009; 15(9):939-47. DOI: 10.1038/nsmb.1473. View

5.
Kleywegt G, Brunger A . Checking your imagination: applications of the free R value. Structure. 1996; 4(8):897-904. DOI: 10.1016/s0969-2126(96)00097-4. View