» Articles » PMID: 24943466

A De novo Designed Metalloenzyme for the Hydration of CO2

Overview
Specialty Chemistry
Date 2014 Jun 20
PMID 24943466
Citations 27
Authors
Affiliations
Soon will be listed here.
Abstract

Protein design will ultimately allow for the creation of artificial enzymes with novel functions and unprecedented stability. To test our current mastery of nature's approach to catalysis, a Zn(II) metalloenzyme was prepared using de novo design. α3DH3 folds into a stable single-stranded three-helix bundle and binds Zn(II) with high affinity using His3 O coordination. The resulting metalloenzyme catalyzes the hydration of CO2 better than any small molecule model of carbonic anhydrase and with an efficiency within 1400-fold of the fastest carbonic anhydrase isoform, CAII, and 11-fold of CAIII.

Citing Articles

Molecular Origami: Designing Functional Molecules of the Future.

Ishida H, Ito T, Kuzuya A Molecules. 2025; 30(2).

PMID: 39860111 PMC: 11768013. DOI: 10.3390/molecules30020242.


Catalysis and Electron Transfer in Designed Metalloproteins.

Koebke K, Pinter T, Pitts W, Pecoraro V Chem Rev. 2022; 122(14):12046-12109.

PMID: 35763791 PMC: 10735231. DOI: 10.1021/acs.chemrev.1c01025.


Nitrite reductase activity within an antiparallel de novo scaffold.

Koebke K, Tebo A, Manickas E, Deb A, Penner-Hahn J, Pecoraro V J Biol Inorg Chem. 2021; 26(7):855-862.

PMID: 34487215 PMC: 11232943. DOI: 10.1007/s00775-021-01889-1.


Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures.

Hamley I Biomacromolecules. 2021; 22(5):1835-1855.

PMID: 33843196 PMC: 8154259. DOI: 10.1021/acs.biomac.1c00240.


Systematic engineering of artificial metalloenzymes for new-to-nature reactions.

Vornholt T, Christoffel F, Pellizzoni M, Panke S, Ward T, Jeschek M Sci Adv. 2021; 7(4).

PMID: 33523952 PMC: 10964965. DOI: 10.1126/sciadv.abe4208.


References
1.
Jewell D, Tu C, Paranawithana S, Tanhauser S, LoGrasso P, Laipis P . Enhancement of the catalytic properties of human carbonic anhydrase III by site-directed mutagenesis. Biochemistry. 1991; 30(6):1484-90. DOI: 10.1021/bi00220a006. View

2.
Zastrow M, Pecoraro V . Influence of active site location on catalytic activity in de novo-designed zinc metalloenzymes. J Am Chem Soc. 2013; 135(15):5895-903. PMC: 3667658. DOI: 10.1021/ja401537t. View

3.
Faiella M, Andreozzi C, Torres Martin de Rosales R, Pavone V, Maglio O, Nastri F . An artificial di-iron oxo-protein with phenol oxidase activity. Nat Chem Biol. 2009; 5(12):882-4. PMC: 3808167. DOI: 10.1038/nchembio.257. View

4.
Zastrow M, Peacock A, Stuckey J, Pecoraro V . Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nat Chem. 2012; 4(2):118-23. PMC: 3270697. DOI: 10.1038/nchem.1201. View

5.
Hunt J, Fierke C . Selection of carbonic anhydrase variants displayed on phage. Aromatic residues in zinc binding site enhance metal affinity and equilibration kinetics. J Biol Chem. 1997; 272(33):20364-72. DOI: 10.1074/jbc.272.33.20364. View