Ishida H, Ito T, Kuzuya A
Molecules. 2025; 30(2).
PMID: 39860111
PMC: 11768013.
DOI: 10.3390/molecules30020242.
Koebke K, Pinter T, Pitts W, Pecoraro V
Chem Rev. 2022; 122(14):12046-12109.
PMID: 35763791
PMC: 10735231.
DOI: 10.1021/acs.chemrev.1c01025.
Koebke K, Tebo A, Manickas E, Deb A, Penner-Hahn J, Pecoraro V
J Biol Inorg Chem. 2021; 26(7):855-862.
PMID: 34487215
PMC: 11232943.
DOI: 10.1007/s00775-021-01889-1.
Hamley I
Biomacromolecules. 2021; 22(5):1835-1855.
PMID: 33843196
PMC: 8154259.
DOI: 10.1021/acs.biomac.1c00240.
Vornholt T, Christoffel F, Pellizzoni M, Panke S, Ward T, Jeschek M
Sci Adv. 2021; 7(4).
PMID: 33523952
PMC: 10964965.
DOI: 10.1126/sciadv.abe4208.
Specific metallo-protein interactions and antimicrobial activity in Histatin-5, an intrinsically disordered salivary peptide.
McCaslin T, Pagba C, Yohannan J, Barry B
Sci Rep. 2019; 9(1):17303.
PMID: 31754129
PMC: 6872563.
DOI: 10.1038/s41598-019-52676-7.
Rational De Novo Design of a Cu Metalloenzyme for Superoxide Dismutation.
Mathieu E, Tolbert A, Koebke K, Tard C, Iranzo O, Penner-Hahn J
Chemistry. 2019; 26(1):249-258.
PMID: 31710732
PMC: 6944188.
DOI: 10.1002/chem.201903808.
Catalysis and Electron Transfer in De Novo Designed Helical Scaffolds.
Pinter T, Koebke K, Pecoraro V
Angew Chem Int Ed Engl. 2019; 59(20):7678-7699.
PMID: 31441170
PMC: 7035182.
DOI: 10.1002/anie.201907502.
Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters.
Lin Y
Molecules. 2019; 24(15).
PMID: 31362341
PMC: 6696605.
DOI: 10.3390/molecules24152743.
Development of de Novo Copper Nitrite Reductases: Where We Are and Where We Need To Go.
Koebke K, Pecoraro V
ACS Catal. 2018; 8(9):8046-8057.
PMID: 30294504
PMC: 6173324.
DOI: 10.1021/acscatal.8b02153.
Designed for life: biocompatible de novo designed proteins and components.
Grayson K, Anderson J
J R Soc Interface. 2018; 15(145).
PMID: 30158186
PMC: 6127164.
DOI: 10.1098/rsif.2018.0472.
The ascent of man(made oxidoreductases).
Grayson K, Anderson J
Curr Opin Struct Biol. 2018; 51:149-155.
PMID: 29754103
PMC: 6227378.
DOI: 10.1016/j.sbi.2018.04.008.
Catalytic peptide assemblies.
Zozulia O, Dolan M, Korendovych I
Chem Soc Rev. 2018; 47(10):3621-3639.
PMID: 29594277
PMC: 6027653.
DOI: 10.1039/c8cs00080h.
Expanding the boundary of biocatalysis: design and optimization of in vitro tandem catalytic reactions for biochemical production.
Wang Y, Ren H, Zhao H
Crit Rev Biochem Mol Biol. 2018; 53(2):115-129.
PMID: 29411648
PMC: 6112242.
DOI: 10.1080/10409238.2018.1431201.
Sculpting Metal-binding Environments in Designed Three-helix Bundles.
Plegaria J, Pecoraro V
Isr J Chem. 2018; 55(1):85-95.
PMID: 29353917
PMC: 5771423.
DOI: 10.1002/ijch.201400146.
Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions.
Hirota S, Lin Y
J Biol Inorg Chem. 2017; 23(1):7-25.
PMID: 29218629
DOI: 10.1007/s00775-017-1506-8.
Intramolecular Photogeneration of a Tyrosine Radical in a Designed Protein.
Tebo A, Quaranta A, Herrero C, Pecoraro V, Aukauloo A
ChemPhotoChem. 2017; 1(3):89-92.
PMID: 29046892
PMC: 5642932.
DOI: 10.1002/cptc.201600044.
Computational approaches for design and redesign of metal-binding sites on proteins.
Akcapinar G, Sezerman O
Biosci Rep. 2017; 37(2).
PMID: 28167677
PMC: 5482196.
DOI: 10.1042/BSR20160179.
Preface.
Pecoraro V
Methods Enzymol. 2016; 580:xvii-xxii.
PMID: 27586351
PMC: 5234773.
DOI: 10.1016/S0076-6879(16)30242-7.
Design and engineering of artificial oxygen-activating metalloenzymes.
Nastri F, Chino M, Maglio O, Bhagi-Damodaran A, Lu Y, Lombardi A
Chem Soc Rev. 2016; 45(18):5020-54.
PMID: 27341693
PMC: 5021598.
DOI: 10.1039/c5cs00923e.