Proteomic Quantification and Site-mapping of S-nitrosylated Proteins Using Isobaric IodoTMT Reagents
Overview
Authors
Affiliations
S-Nitrosylation is a redox-based protein post-translational modification in response to nitric oxide signaling and is involved in a wide range of biological processes. Detection and quantification of protein S-nitrosylation have been challenging tasks due to instability and low abundance of the modification. Many studies have used mass spectrometry (MS)-based methods with different thiol-reactive reagents to label and identify proteins with S-nitrosylated cysteine (SNO-Cys). In this study, we developed a novel iodoTMT switch assay (ISA) using an isobaric set of thiol-reactive iodoTMTsixplex reagents to specifically detect and quantify protein S-nitrosylation. Irreversible labeling of SNO-Cys with the iodoTMTsixplex reagents enables immune-affinity detection of S-nitrosylated proteins, enrichment of iodoTMT-labeled peptides by anti-TMT resin, and importantly, unambiguous modification site-mapping and multiplex quantification by liquid chromatography-tandem MS. Additionally, we significantly improved anti-TMT peptide enrichment efficiency by competitive elution. Using ISA, we identified a set of SNO-Cys sites responding to lipopolysaccharide (LPS) stimulation in murine BV-2 microglial cells and revealed effects of S-allyl cysteine from garlic on LPS-induced protein S-nitrosylation in antioxidative signaling and mitochondrial metabolic pathways. ISA proved to be an effective proteomic approach for quantitative analysis of S-nitrosylation in complex samples and will facilitate the elucidation of molecular mechanisms of nitrosative stress in disease.
Xiao X, Hu M, Gao L, Yuan H, Chong B, Liu Y Signal Transduct Target Ther. 2025; 10(1):8.
PMID: 39774148 PMC: 11707242. DOI: 10.1038/s41392-024-02094-7.
Liang F, Wang M, Li J, Guo J Cancer Cell Int. 2024; 24(1):408.
PMID: 39702281 PMC: 11660716. DOI: 10.1186/s12935-024-03568-y.
Redox regulation, protein S-nitrosylation, and synapse loss in Alzheimer's and related dementias.
Oh C, Nakamura T, Zhang X, Lipton S Neuron. 2024; 112(23):3823-3850.
PMID: 39515322 PMC: 11624102. DOI: 10.1016/j.neuron.2024.10.013.
Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry.
Jiang Y, Rex D, Schuster D, Neely B, Rosano G, Volkmar N ACS Meas Sci Au. 2024; 4(4):338-417.
PMID: 39193565 PMC: 11348894. DOI: 10.1021/acsmeasuresciau.3c00068.
Yu L, Gao Y, Beger R Methods Mol Biol. 2024; 2823:225-239.
PMID: 39052223 DOI: 10.1007/978-1-0716-3922-1_14.