» Articles » PMID: 24879432

Efficient Purging of Deleterious Mutations in Plants with Haploid Selfing

Overview
Date 2014 Jun 1
PMID 24879432
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

In diploid organisms, selfing reduces the efficiency of selection in removing deleterious mutations from a population. This need not be the case for all organisms. Some plants, for example, undergo an extreme form of selfing known as intragametophytic selfing, which immediately exposes all recessive deleterious mutations in a parental genome to selective purging. Here, we ask how effectively deleterious mutations are removed from such plants. Specifically, we study the extent to which deleterious mutations accumulate in a predominantly selfing and a predominantly outcrossing pair of moss species, using genome-wide transcriptome data. We find that the selfing species purge significantly more nonsynonymous mutations, as well as a greater proportion of radical amino acid changes which alter physicochemical properties of amino acids. Moreover, their purging of deleterious mutation is especially strong in conserved regions of protein-coding genes. Our observations show that selfing need not impede but can even accelerate the removal of deleterious mutations, and do so on a genome-wide scale.

Citing Articles

Selfing Shapes Fixation of a Mutant Allele Under Flux Equilibrium.

Xiao Y, Lv Y, Wang Z, Wu C, He Z, Hu X Genome Biol Evol. 2024; 16(12).

PMID: 39656771 PMC: 11652729. DOI: 10.1093/gbe/evae261.


Linked Selection and Gene Density Shape Genome-Wide Patterns of Diversification in Peatmosses.

Meleshko O, Martin M, Flatberg K, Stenoien H, Korneliussen T, Szovenyi P Evol Appl. 2024; 17(8):e13767.

PMID: 39165607 PMC: 11333200. DOI: 10.1111/eva.13767.


Parallel loss of sexual reproduction in field populations of a brown alga sheds light on the mechanisms underlying the emergence of asexuality.

Hoshino M, Cossard G, Haas F, Kane E, Kogame K, Jomori T Nat Ecol Evol. 2024; 8(10):1916-1932.

PMID: 39152327 PMC: 11461277. DOI: 10.1038/s41559-024-02490-w.


The Ka /Ks and πa /πs Ratios under Different Models of Gametophytic and Sporophytic Selection.

Li L, Xiao Y, Wang X, He Z, Lv Y, Hu X Genome Biol Evol. 2023; 15(8).

PMID: 37561000 PMC: 10443736. DOI: 10.1093/gbe/evad151.


Genomic Features of Parthenogenetic Animals.

Jaron K, Bast J, Nowell R, Ranallo-Benavidez T, Robinson-Rechavi M, Schwander T J Hered. 2020; 112(1):19-33.

PMID: 32985658 PMC: 7953838. DOI: 10.1093/jhered/esaa031.


References
1.
Wernegreen J . Reduced selective constraint in endosymbionts: elevation in radical amino acid replacements occurs genome-wide. PLoS One. 2011; 6(12):e28905. PMC: 3237559. DOI: 10.1371/journal.pone.0028905. View

2.
Charlesworth D, Willis J . The genetics of inbreeding depression. Nat Rev Genet. 2009; 10(11):783-96. DOI: 10.1038/nrg2664. View

3.
ODonoghue M, Chater C, Wallace S, Gray J, Beerling D, Fleming A . Genome-wide transcriptomic analysis of the sporophyte of the moss Physcomitrella patens. J Exp Bot. 2013; 64(12):3567-81. PMC: 3745722. DOI: 10.1093/jxb/ert190. View

4.
Mugal C, Wolf J, Kaj I . Why time matters: codon evolution and the temporal dynamics of dN/dS. Mol Biol Evol. 2013; 31(1):212-31. PMC: 3879453. DOI: 10.1093/molbev/mst192. View

5.
McDaniel S, van Baren M, Jones K, Payton A, Quatrano R . Estimating the nucleotide diversity in Ceratodon purpureus (Ditrichaceae) from 218 conserved exon-primed, intron-spanning nuclear loci. Appl Plant Sci. 2014; 1(4). PMC: 4105291. DOI: 10.3732/apps.1200387. View