» Articles » PMID: 24874812

Perfusion Decellularization of Whole Organs

Overview
Journal Nat Protoc
Specialties Biology
Pathology
Science
Date 2014 May 31
PMID 24874812
Citations 98
Authors
Affiliations
Soon will be listed here.
Abstract

The native extracellular matrix (ECM) outlines the architecture of organs and tissues. It provides a unique niche of composition and form, which serves as a foundational scaffold that supports organ-specific cell types and enables normal organ function. Here we describe a standard process for pressure-controlled perfusion decellularization of whole organs for generating acellular 3D scaffolds with preserved ECM protein content, architecture and perfusable vascular conduits. By applying antegrade perfusion of detergents and subsequent washes to arterial vasculature at low physiological pressures, successful decellularization of complex organs (i.e., hearts, lungs and kidneys) can be performed. By using appropriate modifications, pressure-controlled perfusion decellularization can be achieved in small-animal experimental models (rat organs, 4-5 d) and scaled to clinically relevant models (porcine and human organs, 12-14 d). Combining the unique structural and biochemical properties of native acellular scaffolds with subsequent recellularization techniques offers a novel platform for organ engineering and regeneration, for experimentation ex vivo and potential clinical application in vivo.

Citing Articles

Bioengineering of a human iPSC-derived vascularized endocrine pancreas for type 1 diabetes.

Campo F, Neroni A, Pignatelli C, Pellegrini S, Marzinotto I, Valla L Cell Rep Med. 2025; 6(2):101938.

PMID: 39922198 PMC: 11866511. DOI: 10.1016/j.xcrm.2025.101938.


Current Status of Bioprinting Using Polymer Hydrogels for the Production of Vascular Grafts.

Matejkova J, Kanokova D, Matejka R Gels. 2025; 11(1).

PMID: 39851975 PMC: 11765431. DOI: 10.3390/gels11010004.


Enhancing organoid culture: harnessing the potential of decellularized extracellular matrix hydrogels for mimicking microenvironments.

Li C, An N, Song Q, Hu Y, Yin W, Wang Q J Biomed Sci. 2024; 31(1):96.

PMID: 39334251 PMC: 11429032. DOI: 10.1186/s12929-024-01086-7.


Machine Perfusion and Bioengineering Strategies in Transplantation-Beyond the Emerging Concepts.

Niroomand A, Nita G, Lindstedt S Transpl Int. 2024; 37:13215.

PMID: 39267617 PMC: 11390383. DOI: 10.3389/ti.2024.13215.


Harnessing cellular therapeutics for type 1 diabetes mellitus: progress, challenges, and the road ahead.

Grattoni A, Korbutt G, Tomei A, Garcia A, Pepper A, Stabler C Nat Rev Endocrinol. 2024; 21(1):14-30.

PMID: 39227741 DOI: 10.1038/s41574-024-01029-0.


References
1.
Lahteenmaki K, Virkola R, Pouttu R, Kuusela P, Kukkonen M, Korhonen T . Bacterial plasminogen receptors: in vitro evidence for a role in degradation of the mammalian extracellular matrix. Infect Immun. 1995; 63(9):3659-64. PMC: 173507. DOI: 10.1128/iai.63.9.3659-3664.1995. View

2.
Cornwell K, Landsman A, James K . Extracellular matrix biomaterials for soft tissue repair. Clin Podiatr Med Surg. 2009; 26(4):507-23. DOI: 10.1016/j.cpm.2009.08.001. View

3.
Song J, Kim S, Liu Z, Madsen J, Mathisen D, Vacanti J . Enhanced in vivo function of bioartificial lungs in rats. Ann Thorac Surg. 2011; 92(3):998-1005. DOI: 10.1016/j.athoracsur.2011.05.018. View

4.
Ott H, Matthiesen T, Goh S, Black L, Kren S, Netoff T . Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med. 2008; 14(2):213-21. DOI: 10.1038/nm1684. View

5.
Lee L, DEAS J, Howe C . Removal of unbound sodium dodecyl sulfate (SDS) from proteins in solution by electrophoresis through triton x-100-agarose. J Immunol Methods. 1978; 19(1):69-75. DOI: 10.1016/0022-1759(78)90009-1. View