Xu F, Yuan L, Zhao R, Qin B, Zhang F, Ren L
Materials (Basel). 2025; 18(5).
PMID: 40077329
PMC: 11902163.
DOI: 10.3390/ma18051107.
Ge K, Shao H, Lin Z, Taberna P, Simon P
Nat Nanotechnol. 2024; 20(2):196-208.
PMID: 39639178
DOI: 10.1038/s41565-024-01821-z.
Slesinska S, Galek P, Menzel J, Donne S, Fic K, Platek-Mielczarek A
Adv Sci (Weinh). 2024; 11(48):e2409162.
PMID: 39535367
PMC: 11672325.
DOI: 10.1002/advs.202409162.
Padinjareveetil A, Pykal M, Bakandritsos A, Zboril R, Otyepka M, Pumera M
Adv Sci (Weinh). 2024; 11(39):e2307583.
PMID: 39107963
PMC: 11497090.
DOI: 10.1002/advs.202307583.
Gittins J, Ge K, Balhatchet C, Taberna P, Simon P, Forse A
J Am Chem Soc. 2024; 146(18):12473-12484.
PMID: 38716517
PMC: 11082900.
DOI: 10.1021/jacs.4c00508.
Synthesis and performance of binder-free porous carbon electrodes in electrochemical capacitors.
Platek-Mielczarek A, Beda A, Fic K, Matei Ghimbeu C
J Mater Chem A Mater. 2024; 12(11):6412-6425.
PMID: 38481960
PMC: 10929587.
DOI: 10.1039/d3ta04971j.
Modeling galvanostatic charge-discharge of nanoporous supercapacitors.
Zeng L, Wu T, Ye T, Mo T, Qiao R, Feng G
Nat Comput Sci. 2024; 1(11):725-731.
PMID: 38217143
PMC: 10766529.
DOI: 10.1038/s43588-021-00153-5.
Thermo-Electro-Responsive Redox-Copolymers for Amplified Solvation, Morphological Control, and Tunable Ion Interactions.
Chen R, Wang H, Doucet M, Browning J, Su X
JACS Au. 2023; 3(12):3333-3344.
PMID: 38155652
PMC: 10751769.
DOI: 10.1021/jacsau.3c00486.
Design and validation of a low-cost open-source impedance based quartz crystal microbalance for electrochemical research.
Horst R, Katzourakis A, Mei B, de Beer S
HardwareX. 2022; 12:e00374.
PMID: 36406795
PMC: 9672453.
DOI: 10.1016/j.ohx.2022.e00374.
mass change and gas analysis of 3D manganese oxide/graphene aerogel for supercapacitors.
Suktha P, Chiochan P, Krittayavathananon A, Sarawutanukul S, Sethuraman S, Sawangphruk M
RSC Adv. 2022; 9(49):28569-28575.
PMID: 35529617
PMC: 9071041.
DOI: 10.1039/c9ra05444h.
Switching of alternative electrochemical charging mechanism inside single-walled carbon nanotubes: a quartz crystal microbalance study.
Al-Zubaidi A, Takahashi M, Ishii Y, Kawasaki S
RSC Adv. 2022; 11(48):30253-30258.
PMID: 35480287
PMC: 9041153.
DOI: 10.1039/d1ra04398f.
Microscopic Simulations of Electrochemical Double-Layer Capacitors.
Jeanmairet G, Rotenberg B, Salanne M
Chem Rev. 2022; 122(12):10860-10898.
PMID: 35389636
PMC: 9227719.
DOI: 10.1021/acs.chemrev.1c00925.
Ion Dynamics at the Carbon Electrode/Electrolyte Interface: Influence of Carbon Nanotubes Types.
Escobar-Teran F, Perrot H, Sel O
Materials (Basel). 2022; 15(5).
PMID: 35269098
PMC: 8912032.
DOI: 10.3390/ma15051867.
Polyarylether-Based 2D Covalent-Organic Frameworks with In-Plane D-A Structures and Tunable Energy Levels for Energy Storage.
Li N, Jiang K, Rodriguez-Hernandez F, Mao H, Han S, Fu X
Adv Sci (Weinh). 2021; 9(6):e2104898.
PMID: 34957678
PMC: 8867148.
DOI: 10.1002/advs.202104898.
Designing ionic channels in novel carbons for electrochemical energy storage.
Ye J, Simon P, Zhu Y
Natl Sci Rev. 2021; 7(1):191-201.
PMID: 34692031
PMC: 8289042.
DOI: 10.1093/nsr/nwz140.
Electrochemical Characterization of Single Layer Graphene/Electrolyte Interface: Effect of Solvent on the Interfacial Capacitance.
Wu Y, Ye J, Jiang G, Ni K, Shu N, Taberna P
Angew Chem Int Ed Engl. 2021; 60(24):13317-13322.
PMID: 33555100
PMC: 8252098.
DOI: 10.1002/anie.202017057.
Deciphering the Influence of Electrolytes on the Energy Storage Mechanism of Vertically-Oriented Graphene Nanosheet Electrodes by Using Advanced Electrogravimetric Methods.
Le T, Bidan G, Billon F, Delaunay M, Gerard J, Perrot H
Nanomaterials (Basel). 2020; 10(12).
PMID: 33297598
PMC: 7762363.
DOI: 10.3390/nano10122451.
Microplastics generated when opening plastic packaging.
Sobhani Z, Lei Y, Tang Y, Wu L, Zhang X, Naidu R
Sci Rep. 2020; 10(1):4841.
PMID: 32193409
PMC: 7082338.
DOI: 10.1038/s41598-020-61146-4.
Ionic Liquids under Confinement: From Systematic Variations of the Ion and Pore Sizes toward an Understanding of the Structure and Dynamics in Complex Porous Carbons.
Lahrar E, Belhboub A, Simon P, Merlet C
ACS Appl Mater Interfaces. 2019; 12(1):1789-1798.
PMID: 31805764
PMC: 7289487.
DOI: 10.1021/acsami.9b16740.
Sparsely Pillared Graphene Materials for High-Performance Supercapacitors: Improving Ion Transport and Storage Capacity.
Banda H, Perie S, Daffos B, Taberna P, Dubois L, Crosnier O
ACS Nano. 2019; 13(2):1443-1453.
PMID: 30642165
PMC: 6961951.
DOI: 10.1021/acsnano.8b07102.