» Articles » PMID: 24862206

Mitochondrial Mechanisms in Cerebral Vascular Control: Shared Signaling Pathways with Preconditioning

Overview
Journal J Vasc Res
Date 2014 May 28
PMID 24862206
Citations 26
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondrial-initiated events protect the neurovascular unit against lethal stress via a process called preconditioning, which independently promotes changes in cerebrovascular tone through shared signaling pathways. Activation of adenosine triphosphate (ATP)-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels) is a specific and dependable way to induce protection of neurons, astroglia, and cerebral vascular endothelium. Through the opening of mitoKATP channels, mitochondrial depolarization leads to activation of protein kinases and transient increases in cytosolic calcium (Ca(2+)) levels that activate terminal mechanisms that protect the neurovascular unit against lethal stress. The release of reactive oxygen species from mitochondria has similar protective effects. Signaling elements of the preconditioning pathways also are involved in the regulation of vascular tone. Activation of mitoKATP channels in cerebral arteries causes vasodilation, with cell-specific contributions from the endothelium, vascular smooth muscles, and nerves. Preexisting chronic conditions, such as insulin resistance and/or diabetes, prevent preconditioning and impair relaxation to mitochondrial-centered responses in cerebral arteries. Surprisingly, mitochondrial activation after anoxic or ischemic stress appears to protect cerebral vascular endothelium and promotes the restoration of blood flow; therefore, mitochondria may represent an important, but underutilized target in attenuating vascular dysfunction and brain injury in stroke patients.

Citing Articles

Emerging insights into the pathogenesis and therapeutic strategies for vascular endothelial injury-associated diseases: focus on mitochondrial dysfunction.

Pang B, Dong G, Pang T, Sun X, Liu X, Nie Y Angiogenesis. 2024; 27(4):623-639.

PMID: 39060773 PMC: 11564294. DOI: 10.1007/s10456-024-09938-4.


The role of telomerase reverse transcriptase in the mitochondrial protective functions of Angiotensin-(1-7) in diabetic CD34 cells.

Jahan J, Joshi S, Oca I, Toelle A, Lopez-Yang C, Chacon C Biochem Pharmacol. 2024; 222:116109.

PMID: 38458330 PMC: 11007670. DOI: 10.1016/j.bcp.2024.116109.


Cardiometabolic health, menopausal estrogen therapy and the brain: How effects of estrogens diverge in healthy and unhealthy preclinical models of aging.

Daniel J, Lindsey S, Mostany R, Schrader L, Zsombok A Front Neuroendocrinol. 2023; 70:101068.

PMID: 37061205 PMC: 10725785. DOI: 10.1016/j.yfrne.2023.101068.


Protective Role of Short-Chain Fatty Acids against Ang- II-Induced Mitochondrial Dysfunction in Brain Endothelial Cells: A Potential Role of Heme Oxygenase 2.

Kassan M, Kwon Y, Munkhsaikhan U, Sahyoun A, Ishrat T, Galan M Antioxidants (Basel). 2023; 12(1).

PMID: 36671022 PMC: 9854784. DOI: 10.3390/antiox12010160.


Childhood Obesity and Risk of Stroke: A Mendelian Randomisation Analysis.

Zou X, Wang S, Wang L, Xiao L, Yao T, Zeng Y Front Genet. 2021; 12:727475.

PMID: 34868204 PMC: 8638161. DOI: 10.3389/fgene.2021.727475.


References
1.
Kirino T . Ischemic tolerance. J Cereb Blood Flow Metab. 2002; 22(11):1283-96. DOI: 10.1097/01.WCB.0000040942.89393.88. View

2.
McIntosh V, Lasley R . Adenosine receptor-mediated cardioprotection: are all 4 subtypes required or redundant?. J Cardiovasc Pharmacol Ther. 2011; 17(1):21-33. DOI: 10.1177/1074248410396877. View

3.
Robin E, Simerabet M, Hassoun S, Adamczyk S, Tavernier B, Vallet B . Postconditioning in focal cerebral ischemia: role of the mitochondrial ATP-dependent potassium channel. Brain Res. 2010; 1375:137-46. DOI: 10.1016/j.brainres.2010.12.054. View

4.
Graham D, Huynh N, Hamilton C, Beattie E, Smith R, Cocheme H . Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension. 2009; 54(2):322-8. DOI: 10.1161/HYPERTENSIONAHA.109.130351. View

5.
Katakam P, Domoki F, Snipes J, Busija A, Jarajapu Y, Busija D . Impaired mitochondria-dependent vasodilation in cerebral arteries of Zucker obese rats with insulin resistance. Am J Physiol Regul Integr Comp Physiol. 2008; 296(2):R289-98. PMC: 2643987. DOI: 10.1152/ajpregu.90656.2008. View