» Articles » PMID: 24861567

Intracellular Light-activation of Riboswitch Activity

Overview
Journal Chembiochem
Specialty Biochemistry
Date 2014 May 28
PMID 24861567
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

By combining a riboswitch with a cell-permeable photocaged small-molecule ligand, an optochemical gene control element was constructed that enabled spatial and temporal control of gene expression in bacterial cells. The simplicity of this strategy, coupled with the ability to create synthetic riboswitches with tailored ligand specificities and output in a variety of microorganisms, plants, and fungi might afford a general strategy to photocontrol gene expression in vivo. The ability to activate riboswitches by using light enables the interrogation and manipulation of a wide range of biological processes with high precision, and will have broad utility in the regulation of artificial genetic circuits.

Citing Articles

Development of label-free light-controlled gene expression technologies using mid-IR and terahertz light.

Yamazaki H, Sugawara R, Takayama Y Front Bioeng Biotechnol. 2024; 12:1324757.

PMID: 39465004 PMC: 11502365. DOI: 10.3389/fbioe.2024.1324757.


Optogenetic Tools for Regulating RNA Metabolism and Functions.

Zheng R, Xue Z, You M Chembiochem. 2024; 25(24):e202400615.

PMID: 39316432 PMC: 11666399. DOI: 10.1002/cbic.202400615.


Recent Synthetic Biology Approaches for Temperature- and Light-Controlled Gene Expression in Bacterial Hosts.

Choi J, Ahn J, Bae J, Koh M Molecules. 2022; 27(20).

PMID: 36296389 PMC: 9611254. DOI: 10.3390/molecules27206798.


Translational control of gene function through optically regulated nucleic acids.

Darrah K, Deiters A Chem Soc Rev. 2021; 50(23):13253-13267.

PMID: 34739027 PMC: 8900068. DOI: 10.1039/d1cs00257k.


Photochemical control of bacterial gene expression based on encoded genetic switches.

Paul A, Huang J, Han Y, Yang X, Vukovic L, Kral P Chem Sci. 2021; 12(7):2646-2654.

PMID: 34164033 PMC: 8179269. DOI: 10.1039/d0sc05479h.


References
1.
Nomura Y, Yokobayashi Y . Reengineering a natural riboswitch by dual genetic selection. J Am Chem Soc. 2007; 129(45):13814-5. DOI: 10.1021/ja076298b. View

2.
Winkler W, Nahvi A, Roth A, Collins J, Breaker R . Control of gene expression by a natural metabolite-responsive ribozyme. Nature. 2004; 428(6980):281-6. DOI: 10.1038/nature02362. View

3.
Topp S, Reynoso C, Seeliger J, Goldlust I, Desai S, Murat D . Synthetic riboswitches that induce gene expression in diverse bacterial species. Appl Environ Microbiol. 2010; 76(23):7881-4. PMC: 2988590. DOI: 10.1128/AEM.01537-10. View

4.
Cheah M, Wachter A, Sudarsan N, Breaker R . Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature. 2007; 447(7143):497-500. DOI: 10.1038/nature05769. View

5.
Roth A, Breaker R . The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem. 2009; 78:305-34. PMC: 5325118. DOI: 10.1146/annurev.biochem.78.070507.135656. View