Intracellular Light-activation of Riboswitch Activity
Overview
Affiliations
By combining a riboswitch with a cell-permeable photocaged small-molecule ligand, an optochemical gene control element was constructed that enabled spatial and temporal control of gene expression in bacterial cells. The simplicity of this strategy, coupled with the ability to create synthetic riboswitches with tailored ligand specificities and output in a variety of microorganisms, plants, and fungi might afford a general strategy to photocontrol gene expression in vivo. The ability to activate riboswitches by using light enables the interrogation and manipulation of a wide range of biological processes with high precision, and will have broad utility in the regulation of artificial genetic circuits.
Yamazaki H, Sugawara R, Takayama Y Front Bioeng Biotechnol. 2024; 12:1324757.
PMID: 39465004 PMC: 11502365. DOI: 10.3389/fbioe.2024.1324757.
Optogenetic Tools for Regulating RNA Metabolism and Functions.
Zheng R, Xue Z, You M Chembiochem. 2024; 25(24):e202400615.
PMID: 39316432 PMC: 11666399. DOI: 10.1002/cbic.202400615.
Choi J, Ahn J, Bae J, Koh M Molecules. 2022; 27(20).
PMID: 36296389 PMC: 9611254. DOI: 10.3390/molecules27206798.
Translational control of gene function through optically regulated nucleic acids.
Darrah K, Deiters A Chem Soc Rev. 2021; 50(23):13253-13267.
PMID: 34739027 PMC: 8900068. DOI: 10.1039/d1cs00257k.
Photochemical control of bacterial gene expression based on encoded genetic switches.
Paul A, Huang J, Han Y, Yang X, Vukovic L, Kral P Chem Sci. 2021; 12(7):2646-2654.
PMID: 34164033 PMC: 8179269. DOI: 10.1039/d0sc05479h.