» Articles » PMID: 24857547

O-GlcNAcylation Regulates Cancer Metabolism and Survival Stress Signaling Via Regulation of the HIF-1 Pathway

Overview
Journal Mol Cell
Publisher Cell Press
Specialty Cell Biology
Date 2014 May 27
PMID 24857547
Citations 209
Authors
Affiliations
Soon will be listed here.
Abstract

The hexosamine biosynthetic pathway elevates posttranslational addition of O-linked β-N-acetylglucosamine (O-GlcNAc) on intracellular proteins. Cancer cells elevate total O-GlcNAcylation by increasing O-GlcNAc transferase (OGT) and/or decreasing O-GlcNAcase (OGA) levels. Reducing O-GlcNAcylation inhibits oncogenesis. Here, we demonstrate that O-GlcNAcylation regulates glycolysis in cancer cells via hypoxia-inducible factor 1 (HIF-1α) and its transcriptional target GLUT1. Reducing O-GlcNAcylation increases α-ketoglutarate, HIF-1 hydroxylation, and interaction with von Hippel-Lindau protein (pVHL), resulting in HIF-1α degradation. Reducing O-GlcNAcylation in cancer cells results in activation of endoplasmic reticulum (ER) stress and cancer cell apoptosis mediated through C/EBP homologous protein (CHOP). HIF-1α and GLUT1 are critical for OGT-mediated regulation of metabolic stress, as overexpression of stable HIF-1 or GLUT1 rescues metabolic defects. Human breast cancers with high levels of HIF-1α contain elevated OGT, and lower OGA levels correlate independently with poor patient outcome. Thus, O-GlcNAcylation regulates cancer cell metabolic reprograming and survival stress signaling via regulation of HIF-1α.

Citing Articles

Endoplasmic Reticulum Stress: Triggers Microenvironmental Regulation and Drives Tumor Evolution.

Peng C, Wang J, Wang S, Zhao Y, Wang H, Wang Y Cancer Med. 2025; 14(5):e70684.

PMID: 40035165 PMC: 11877002. DOI: 10.1002/cam4.70684.


Brain O-GlcNAcylation: Bridging physiological functions, disease mechanisms, and therapeutic applications.

Chen L, Jiang H, Licinio J, Wu H Mol Psychiatry. 2025; .

PMID: 40033044 DOI: 10.1038/s41380-025-02943-z.


Key glycometabolism during oocyte maturation and early embryonic development.

Zhang Y, Li T, Wang Y, Yu Y Reproduction. 2025; 169(3).

PMID: 39846956 PMC: 11840835. DOI: 10.1530/REP-24-0275.


Glutamine metabolism is essential for coronavirus replication in host cells and in mice.

Greene K, Choi A, Yang N, Chen M, Li R, Qiu Y J Biol Chem. 2024; 301(1):108063.

PMID: 39662828 PMC: 11750454. DOI: 10.1016/j.jbc.2024.108063.


Dynamics simulations of hypoxia inducible factor-1 regulatory network in cancer using formal verification techniques.

Azhar H, Saeed M, Jabeen I Front Mol Biosci. 2024; 11:1386930.

PMID: 39606028 PMC: 11599740. DOI: 10.3389/fmolb.2024.1386930.


References
1.
Gao Y, Wells L, Comer F, Parker G, Hart G . Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic beta-N-acetylglucosaminidase from human brain. J Biol Chem. 2001; 276(13):9838-45. DOI: 10.1074/jbc.M010420200. View

2.
Caldwell S, Jackson S, Shahriari K, Lynch T, Sethi G, Walker S . Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene. 2010; 29(19):2831-42. DOI: 10.1038/onc.2010.41. View

3.
Hanahan D, Weinberg R . Hallmarks of cancer: the next generation. Cell. 2011; 144(5):646-74. DOI: 10.1016/j.cell.2011.02.013. View

4.
DeBerardinis R, Lum J, Hatzivassiliou G, Thompson C . The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008; 7(1):11-20. DOI: 10.1016/j.cmet.2007.10.002. View

5.
. Comprehensive molecular portraits of human breast tumours. Nature. 2012; 490(7418):61-70. PMC: 3465532. DOI: 10.1038/nature11412. View