» Articles » PMID: 24821711

VDR Status Arbitrates the Prometastatic Effects of Tumor-associated Macrophages

Overview
Journal Mol Cancer Res
Specialty Cell Biology
Date 2014 May 14
PMID 24821711
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

Unlabelled: The relationship between tumor-associated macrophages (TAM) and epithelial-to-mesenchymal transition (EMT) during the initiation and progression of metastasis is still unclear. Here, a role for the vitamin D receptor (VDR) in metastasis was identified, as well as a role in the relationship between TAMs and EMT. First, the expression level of VDR was examined in clinical tissue from human patients with breast cancer or a mouse model of breast cancer with differential metastasis. These results revealed that VDR expression negatively correlates with metastasis in breast cancer. Second, coculture of VDR-overexpressing breast cancer cells with a macrophage cell line demonstrated that overexpression of VDR alleviated the prometastatic effect of cocultured macrophages on breast cancer cells. Furthermore, VDR overexpression abrogated the induction of EMT in breast cancer cells by cocultured macrophage cells, as measured by a loss of E-cadherin (CDH1) and induction of α-smooth muscle actin (α-SMA). TNFα in macrophage conditioned media inhibited VDR expression, whereas downregulation of VDR further mediated the promotion of TGFβ-induced EMT by TNFα. In addition, β-catenin expression was inhibited in VDR-overexpressing breast cancer cells and tumor xenografts. Finally, administration of calcitriol [1,25-(OH)2D3], an active vitamin D metabolite, exerted similar antimetastatic effects in breast cancer cells in vitro and a mouse model of breast cancer in vivo with preservation of VDR and suppression of β-catenin.

Implications: VDR suppression by TNFα mediates the prometastatic effect of TAMs through enhancement of the β-catenin pathway.

Citing Articles

Bone mineral density affects tumor growth by shaping microenvironmental heterogeneity.

Whitman M, Mantri M, Spanos E, Estroff L, De Vlaminck I, Fischbach C Biomaterials. 2024; 315:122916.

PMID: 39490060 PMC: 11658005. DOI: 10.1016/j.biomaterials.2024.122916.


A new perspective on the therapeutic potential of tumor metastasis: targeting the metabolic interactions between TAMs and tumor cells.

Zhao X, Ren T, Li S, Wang X, Hou R, Guan Z Int J Biol Sci. 2024; 20(13):5109-5126.

PMID: 39430253 PMC: 11489172. DOI: 10.7150/ijbs.99680.


Vitamin D reduces the expression of M1 and M2 macrophage markers in breast cancer patients.

Stachowicz-Suhs M, Labedz N, Milczarek M, Klopotowska D, Filip-Psurska B, Maciejczyk A Sci Rep. 2024; 14(1):22126.

PMID: 39333342 PMC: 11437092. DOI: 10.1038/s41598-024-73152-x.


Bone mineral density affects tumor growth by shaping microenvironmental heterogeneity.

Whitman M, Mantri M, Spanos E, Estroff L, De Vlaminck I, Fischbach C bioRxiv. 2024; .

PMID: 39091735 PMC: 11291034. DOI: 10.1101/2024.07.19.604333.


Calcitriol promotes M2 polarization of tumor-associated macrophages in 4T1 mouse mammary gland cancer via the induction of proinflammatory cytokines.

Stachowicz-Suhs M, Labedz N, Anisiewicz A, Banach J, Klopotowska D, Milczarek M Sci Rep. 2024; 14(1):3778.

PMID: 38355711 PMC: 10866890. DOI: 10.1038/s41598-024-54433-x.