» Articles » PMID: 24762786

Quality Control and Conduct of Genome-wide Association Meta-analyses

Abstract

Rigorous organization and quality control (QC) are necessary to facilitate successful genome-wide association meta-analyses (GWAMAs) of statistics aggregated across multiple genome-wide association studies. This protocol provides guidelines for (i) organizational aspects of GWAMAs, and for (ii) QC at the study file level, the meta-level across studies and the meta-analysis output level. Real-world examples highlight issues experienced and solutions developed by the GIANT Consortium that has conducted meta-analyses including data from 125 studies comprising more than 330,000 individuals. We provide a general protocol for conducting GWAMAs and carrying out QC to minimize errors and to guarantee maximum use of the data. We also include details for the use of a powerful and flexible software package called EasyQC. Precise timings will be greatly influenced by consortium size. For consortia of comparable size to the GIANT Consortium, this protocol takes a minimum of about 10 months to complete.

Citing Articles

Genome-wide association analysis using multiple Atlantic salmon populations.

Ajasa A, Gjoen H, Boison S, Lillehammer M Genet Sel Evol. 2025; 57(1):9.

PMID: 40016680 PMC: 11869457. DOI: 10.1186/s12711-025-00959-1.


A comparison of genome-wide association analyses of persistent symptoms after Lyme disease, fibromyalgia, and myalgic encephalomyelitis - chronic fatigue syndrome.

Hirsch A, Justice A, Poissant A, Nordberg C, Josyula N, Aucott J BMC Infect Dis. 2025; 25(1):265.

PMID: 39994562 PMC: 11853495. DOI: 10.1186/s12879-024-10238-x.


Genome-wide mapping of complement system proteins for islet autoimmunity in the DAISY and TEDDY children.

Hu X, Webb-Robertson B, Parikh H, Nakayasu E, Onengut-Gumuscu S, Chen W Res Sq. 2025; .

PMID: 39989961 PMC: 11844657. DOI: 10.21203/rs.3.rs-5975824/v1.


Multi-ancestry genome-wide meta-analysis with 472,819 individuals identifies 32 novel risk loci for psoriasis.

Zhang M, Su W, Deng J, Zhai B, Zhu G, Gao R J Transl Med. 2025; 23(1):133.

PMID: 39885523 PMC: 11783861. DOI: 10.1186/s12967-024-06015-8.


Novel genetic insight for psoriasis: integrative genome-wide analyses in 863 080 individuals and proteome-wide Mendelian randomization.

Liu S, Li L, Liang Y, Tan Y, Wang X, Feng Y Brief Bioinform. 2025; 26(1).

PMID: 39883516 PMC: 11781221. DOI: 10.1093/bib/bbaf032.


References
1.
Manning A, Hivert M, Scott R, Grimsby J, Bouatia-Naji N, Chen H . A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet. 2012; 44(6):659-69. PMC: 3613127. DOI: 10.1038/ng.2274. View

2.
Abecasis G, Altshuler D, Auton A, Brooks L, Durbin R, Gibbs R . A map of human genome variation from population-scale sequencing. Nature. 2010; 467(7319):1061-73. PMC: 3042601. DOI: 10.1038/nature09534. View

3.
Heid I, Jackson A, Randall J, Winkler T, Qi L, Steinthorsdottir V . Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet. 2010; 42(11):949-60. PMC: 3000924. DOI: 10.1038/ng.685. View

4.
Loos R, Lindgren C, Li S, Wheeler E, Zhao J, Prokopenko I . Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008; 40(6):768-75. PMC: 2669167. DOI: 10.1038/ng.140. View

5.
Hindorff L, Sethupathy P, Junkins H, Ramos E, Mehta J, Collins F . Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009; 106(23):9362-7. PMC: 2687147. DOI: 10.1073/pnas.0903103106. View