» Articles » PMID: 24748685

High-order Spectral/ Element Discretisation for Reaction-diffusion Problems on Surfaces: Application to Cardiac Electrophysiology

Overview
Journal J Comput Phys
Date 2014 Apr 22
PMID 24748685
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

We present a numerical discretisation of an embedded two-dimensional manifold using high-order continuous Galerkin spectral/ elements, which provide exponential convergence of the solution with increasing polynomial order, while retaining geometric flexibility in the representation of the domain. Our work is motivated by applications in cardiac electrophysiology where sharp gradients in the solution benefit from the high-order discretisation, while the computational cost of anatomically-realistic models can be significantly reduced through the surface representation and use of high-order methods. We describe and validate our discretisation and provide a demonstration of its application to modelling electrochemical propagation across a human left atrium.

Citing Articles

Rethinking multiscale cardiac electrophysiology with machine learning and predictive modelling.

Cantwell C, Mohamied Y, Tzortzis K, Garasto S, Houston C, Chowdhury R Comput Biol Med. 2018; 104:339-351.

PMID: 30442428 PMC: 6334203. DOI: 10.1016/j.compbiomed.2018.10.015.


Semi-implicit Non-conforming Finite-Element Schemes for Cardiac Electrophysiology: A Framework for Mesh-Coarsening Heart Simulations.

Jilberto J, Hurtado D Front Physiol. 2018; 9:1513.

PMID: 30425648 PMC: 6218665. DOI: 10.3389/fphys.2018.01513.


Rotor Tracking Using Phase of Electrograms Recorded During Atrial Fibrillation.

Roney C, Cantwell C, Qureshi N, Chowdhury R, Dupont E, Lim P Ann Biomed Eng. 2016; 45(4):910-923.

PMID: 27921187 PMC: 5362653. DOI: 10.1007/s10439-016-1766-4.


Simulating Cardiac Electrophysiology Using Unstructured All-Hexahedra Spectral Elements.

Cuccuru G, Fotia G, Maggio F, Southern J Biomed Res Int. 2015; 2015:473279.

PMID: 26583112 PMC: 4637157. DOI: 10.1155/2015/473279.


High-order finite element methods for cardiac monodomain simulations.

Vincent K, Gonzales M, Gillette A, Villongco C, Pezzuto S, Omens J Front Physiol. 2015; 6:217.

PMID: 26300783 PMC: 4525671. DOI: 10.3389/fphys.2015.00217.


References
1.
Sbalzarini I, Hayer A, Helenius A, Koumoutsakos P . Simulations of (an)isotropic diffusion on curved biological surfaces. Biophys J. 2005; 90(3):878-85. PMC: 1367112. DOI: 10.1529/biophysj.105.073809. View

2.
Arthurs C, Bishop M, Kay D . Efficient simulation of cardiac electrical propagation using high order finite elements. J Comput Phys. 2014; 231(10):3946-3962. PMC: 4067136. DOI: 10.1016/j.jcp.2012.01.037. View

3.
Courtemanche M, Ramirez R, Nattel S . Ionic mechanisms underlying human atrial action potential properties: insights from a mathematical model. Am J Physiol. 1998; 275(1):H301-21. DOI: 10.1152/ajpheart.1998.275.1.H301. View